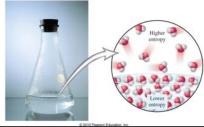
Energy and Chemistry

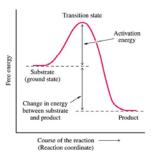
· Energy is the capacity to do work

- Kinetic versus Potential energy
 - In compounds, potential energy is stored in bonds and other interactions
- Heat: energy flowing from a hotter to a colder object
 - Enthalpy
 - Exothermic vs endothermic processes
- Focus on energy <u>changes</u>


Potential Energy	
Energy stored by position	Water at the top of a waterfall (hydroelectric power; Section 15.15)
	A child at the top of a slide
	A skier poised at the top of a mountain slope
	A swimmer ready to dive
	A baseball player poised to swing his bat
Energy stored in chemical bonds Energy stored in bound nuclear particles	Fuel (coal, gasoline, natural gas; Sections 15.6–15.8)
	Food (carbohydrates, fats, proteins; Chapter 17)
	Explosives (nitroglycerin)
	Nuclear energy (power plants, bombs; Section 15.10)
Energy stored by compression	A compressed spring
	A squeezed rubber ball
Kinetic Energy Energy of any moving object	A rolling freight train
	A spinning water turbine (hydroelectric power; Section 15.15)
	A rolling bowling ball
	A moving molecule
	A sailboat skimming across a lake
	A baseball hurtling toward home plate
	The eruption of a volcano

Thermodynamics and Kinetics

- Any process has two components
 - Thermodynamics dealing with energy or tendency
 - Kinetics dealing with rate
- Thermodynamic parameters are **state functions**. Only concerned with starting and ending states
- Kinetics deals with what happens in between, the mechanism of the process.
 - Where you start, where you end, but not how you get there.


Laws of Thermodynamics

- · Key terms: system, surroundings and universe
- First Law: Energy is neither created or destroyed
 - "Law of conservation of energy"
 - You can't win, you can only break even
 - More useful forms of energy are constantly being degraded into less useful forms
- Second Law: The entropy of the universe is increasing OR Heat cannot be converted to work without making some changes to the universe OR energy does not flow spontaneously from a cold object to a hot one.
 - You can't break even
 - What is entropy
 - Spontaneous vs nonspontaneous

Chemical Energy

- Often stored in bonds
- Typically costs energy to break bonds, energy is released when bonds are made
 - Think stability
- Energy can be released or absorbed as heat
 - Amount of energy depends on reaction and on the quantities of reactants/products used
 - · Heat of reaction
 - Heat of combustion
 - Units?
- Bond Energy: Energy required to break bond
- Consider "Free Energy"
- Energy's role in kinetics
 - Activation energy
 - Kinetic energy of molecules as a function of temperature

http://www4.nau.edu/meteorite/meteorite/Images/EnergyDiagram.jpg