| CHEM | 1 130 | | | |--------|----------|-----|------| | Quiz 6 | 6 – Oct. | 28, | 2011 | Complete the following problems. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units. 1. Brass has a density of 8.40 g/cm³ and a specific heat of 0.385 J g⁻¹ °C⁻¹. A 11.6 cm³ piece of brass, initially at 198°C is dropped into an insulated container with 150.0 g water, initially at 23.5°C. What will be the final temperature of the water-brass mixture? . (8 pts) 2. Oxygen-acetylene flames are used to produce very high temperatures for a variety of applications, including welding. What is the quantity of heat evolved, in kilojoules, when 124 gram mixture containing equal parts of C_2H_2 (molar mass 21.213 g/mol) O_2 by mass is burned? Assume the reaction below: (8 pts) $2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$ $\Delta H^o = -2610 \text{ kJ}$ 3. Determine ΔH^o for the reaction $N_2H_4(\ell) + 2H_2O_2(\ell) \to N_2(g) + 4H_2O(\ell)$ from the data below: (9 pts) $N_2H_4(\ell) + O_2(g) \to N_2(g) + 2H_2O(\ell)$ $\Delta H^o = -622.2 \text{ kJ}$ $H_2(g) + \frac{1}{2}O_2(g) \to H_2O(\ell)$ $\Delta H^o = -285.8 \text{ kJ}$ $H_2(g) + O_2(g) \to H_2O_2(\ell)$ $\Delta H^o = -187.8 \text{ kJ}$ ## **Possibly Useful Information** | | | q = mcΔT | | | | | | | | K = °C + 273.15 | | | | | | | | |------------------------------|---------------------|------------------------------|---------------------|---------------------|---------------------|---------------------|--------------------|---------------------|--|----------------------------|---------------------|-------------------------|------------------------------|----------------------------|------------------------------|-------------------------------|---------------------| | | | $q_{rxn} = n\Delta H_{rxn}$ | | | | | | | Specific heat of H ₂ O (I) = 4.184 J/gK | | | | | | | | | | 1
1A | | | | | | | | | | | | | | | | | 18
8A | | 1
H
1.00794 | 2
2A | | | | | | | | | | | 13
3A | 14
4A | 15
5A | 16
6A | 17
7A | 2
He
4.00260 | | 3
Li
6.941 | 4
Be
9.01218 | 3 | | | | | | | | | | 5
B
10.811 | 6
C
12.011 | 7
N
14.0067 | 8
O
15.9994 | 9
F
18.9984 | 10
Ne
20.1797 | | 11
Na
22.9898 | 12
Mg
24.3056 | 3
3B | 4
4B | 5
5B | 6
6B | 7
7B | 8 | $-\frac{9}{8B}$ | 10 | 11
1B | 12
2B | 13
Al
26.9815 | 14
Si
28.0855 | 15
P
30.9738 | 16
S
32.066 | 17
Cl
35.4527 | 18
Ar
39.948 | | 19
K
39.0983 | 20
Ca
40.078 | 21
Sc
44.9559 | 22
Ti
47.88 | 23
V
50.9415 | 24
Cr
51.9961 | 25
Mn
54.9381 | 26
Fe
55.847 | 27
Co
58.9332 | 28
Ni
58.693 | 29
Cu
63.546 | 30
Zn
65.39 | 31
Ga
69.723 | 32
Ge
72.61 | 33
As
74.9216 | 34
Se
78.96 | 35
Br
79.904 | 36
Kr
83.80 | | 37
Rb
85.4678 | 38
Sr
87.62 | 39
Y
88.9059 | 40
Zr
91.224 | 41
Nb
92.9064 | 42
Mo
95.94 | 43
Tc
(98) | 44
Ru
101.07 | 45
Rh
102.906 | 46
Pd
106.42 | 47
Ag
107.868 | 48
Cd
112.411 | 49
In
114.818 | 50
Sn
118.710 | 51
Sb
121.757 | 52
Te
127.60 | 53
I
126.904 | 54
Xe
131.29 | | 55
Cs
132.905 | 56
Ba
137.322 | 57
*La
7 138.906 | 72
Hf
178.49 | 73
Ta
180.948 | 74
W
183.84 | 75
Re
186.207 | 76
Os
190.23 | 77
Ir
192.22 | 78
Pt
195.08 | 79
Au
196.967 | 80
Hg
200.59 | 81
Tl
204.383 | 82
Pb
207.2 | 83
Bi
208.980 | 84
Po
(209) | 85
At
(210) | 86
Rn
(222) | | 87
Fr
(223) | 88
Ra
226.025 | 89
† Ac
227.028 | 104
Rf
(261) | 105
Db
(262) | 106
Sg
(266) | 107
Bh
(264) | 108
Hs
(277) | 109
Mt
(268) | 110
Ds
(271) | 111
Rg
(272) | | | | | | | | | *Lanthanide series | | 58
Ce | 59
Pr | 60
Nd | 61
Pm | 62
Sm | 63
Eu | 64
Gd | 65
Tb | 66
Dy | 67
Ho | 68
Er | 69
Tm | 70
Yb | 71
Lu | | | | [†] Actinide series | | | 90
Th
232.038 | 91
Pa
231.036 | 92
U
238.029 | 93
Np
237.048 | 94
Pu
(244) | 95
Am
(243) | 96
Cm
(247) | 97
Bk
(247) | 98
Cf
(251) | 99
Es
(252) | 167.26
100
Fm
(257) | 101
Md
(258) | 173.04
102
No
(259) | 174.967
103
Lr
(262) | |