CHEM	130		
Quiz 5	- Oct.	7,	2011

Complete the following problems. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units.

- 1. Write overall reactions and net ionic equations for the following. Identify the states of the products in the reaction. (8 points).
 - a. Aqueous sodium carbonate reacts with aqueous silver nitrate.

b. Aqueous calcium hydroxide reacts with aqueous sulfuric acid.

2. Balance the oxidation-reduction reaction below in acidic solution.(9 pts.)

$$S_2O_3^{2-} + MnO_4^{-} \rightarrow SO_4^{2-} + Mn^{2+}$$

3. An iron ore sample weighing 0.9132 g is dissolved in HCl(aq), and the iron is obtained as Fe²⁺(aq). This solution is then titrated with 28.72 mL of 0.05051 M K₂Cr₂O₇(aq) using the balanced reaction below. What is the mass percent of iron in the iron ore? (9 pts)

$$6Fe^{2+} + 14H^{+} + Cr_{2}O_{7}^{2-} \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_{2}O$$

Possibly Useful Information

TABLE 5.1 Solubility Guidelines for Common Ionic Solids

Follow the lower-numbered guideline when two guidelines are in conflict. This leads to the correct prediction in most cases.

- 1. Salts of group 1 cations (with some exceptions for ${\rm Li}^+$) and the ${\rm NH_4}^+$ cation are soluble.
- 2. Nitrates, acetates, and perchlorates are soluble.
- 3. Salts of silver, lead, and mercury(I) are insoluble.
- 4. Chlorides, bromides, and iodides are soluble.
- 5. Carbonates, phosphates, sulfides, oxides, and hydroxides are insoluble (sulfides of group 2 cations and hydroxides of Ca²⁺, Sr²⁺, and Ba²⁺ are slightly soluble).
- 6. Sulfates are soluble except for those of calcium, strontium, and barium.

TABLE 5.3	Some Common Gas-Forming Reactions
lon	Reaction
HSO ₃	$HSO_3^- + H^+ \longrightarrow SO_2(g) + H_2O(l)$
SO ₃ ²⁻	$SO_3^{2-} + 2 H^+ \longrightarrow SO_2(g) + H_2O(l)$
HCO ₃	$HCO_3^- + H^+ \longrightarrow CO_2(g) + H_2O(l)$
CO_3^{2-}	$CO_3^{2-} + 2 H^+ \longrightarrow CO_2(g) + H_2O(l)$
S ²⁻	$S^{2-} + 2 H^+ \longrightarrow H_2S(g)$
NH ₄ ⁺	$NH_4^+ + OH^- \longrightarrow NH_3(g) + H_2O(l)$

Copyright © 2007 Pearson Prentice Hall, I

1																	18
1A	,																8A
1 H	2											13	14	15	16	17	2 He
1.00794	2A											3A	4A	5A	6A	7A	4.00260
3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
22.9898	24.3050	3B	4B	5B	6B	7B	_	-8B-		1B	2B	26.9815	28.0855	30.9738	32.066	35.4527	39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9381	26 Fe 55.847	27 Co 58.9332	28 Ni 58.693	29 Cu 63.546	30 Zn 65,39	31 Ga 69,723	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88,9059	40 Zr 91,224	41 Nb 92,9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	47 Ag 107.868	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126.904	54 Xe 131.29
55 Cs 132.905	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir 192.22	78 Pt 195.08	79 Au 196.967	80 Hg 200.59	81 Tl 204.383	82 Pb 207.2	83 Bi 208.980	84 Po (209)	85 At (210)	86 Rn (222)
	137.327	138.906	178.49	180.948	183.84	186.207	190.23	192.22	195.00							(210)	

*Lanthanide series	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
[†] Actinide series	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)