| CHEM | 130 | | | |-------------|--------|----|------| | Quiz 5 | - Oct. | 7, | 2011 | Complete the following problems. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units. - 1. Write overall reactions and net ionic equations for the following. Identify the states of the products in the reaction. (8 points). - a. Aqueous sodium carbonate reacts with aqueous silver nitrate. b. Aqueous calcium hydroxide reacts with aqueous sulfuric acid. 2. Balance the oxidation-reduction reaction below in acidic solution.(9 pts.) $$S_2O_3^{2-} + MnO_4^{-} \rightarrow SO_4^{2-} + Mn^{2+}$$ 3. An iron ore sample weighing 0.9132 g is dissolved in HCl(aq), and the iron is obtained as Fe²⁺(aq). This solution is then titrated with 28.72 mL of 0.05051 M K₂Cr₂O₇(aq) using the balanced reaction below. What is the mass percent of iron in the iron ore? (9 pts) $$6Fe^{2+} + 14H^{+} + Cr_{2}O_{7}^{2-} \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_{2}O$$ ## **Possibly Useful Information** ## **TABLE 5.1** Solubility Guidelines for Common Ionic Solids Follow the lower-numbered guideline when two guidelines are in conflict. This leads to the correct prediction in most cases. - 1. Salts of group 1 cations (with some exceptions for ${\rm Li}^+$) and the ${\rm NH_4}^+$ cation are soluble. - 2. Nitrates, acetates, and perchlorates are soluble. - 3. Salts of silver, lead, and mercury(I) are insoluble. - 4. Chlorides, bromides, and iodides are soluble. - 5. Carbonates, phosphates, sulfides, oxides, and hydroxides are insoluble (sulfides of group 2 cations and hydroxides of Ca²⁺, Sr²⁺, and Ba²⁺ are slightly soluble). - 6. Sulfates are soluble except for those of calcium, strontium, and barium. | TABLE 5.3 | Some Common Gas-Forming Reactions | |-------------------------------|---| | lon | Reaction | | HSO ₃ | $HSO_3^- + H^+ \longrightarrow SO_2(g) + H_2O(l)$ | | SO ₃ ²⁻ | $SO_3^{2-} + 2 H^+ \longrightarrow SO_2(g) + H_2O(l)$ | | HCO ₃ | $HCO_3^- + H^+ \longrightarrow CO_2(g) + H_2O(l)$ | | CO_3^{2-} | $CO_3^{2-} + 2 H^+ \longrightarrow CO_2(g) + H_2O(l)$ | | S ²⁻ | $S^{2-} + 2 H^+ \longrightarrow H_2S(g)$ | | NH ₄ ⁺ | $NH_4^+ + OH^- \longrightarrow NH_3(g) + H_2O(l)$ | Copyright © 2007 Pearson Prentice Hall, I | 1 | | | | | | | | | | | | | | | | | 18 | |----------------------------|--------------------|---------------------|--------------------|---------------------|---------------------|---------------------|--------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|----------------------------|--------------------|--------------------|---------------------| | 1A | , | | | | | | | | | | | | | | | | 8A | | 1
H | 2 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 2
He | | 1.00794 | 2A | | | | | | | | | | | 3A | 4A | 5A | 6A | 7A | 4.00260 | | 3
Li
6.941 | 4
Be
9.01218 | | | | | | | | | | | 5
B
10.811 | 6
C
12.011 | 7
N
14.0067 | 8
O
15.9994 | 9
F
18.9984 | 10
Ne
20.1797 | | 11
Na | 12
Mg | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
Al | 14
Si | 15
P | 16
S | 17
Cl | 18
Ar | | 22.9898 | 24.3050 | 3B | 4B | 5B | 6B | 7B | _ | -8B- | | 1B | 2B | 26.9815 | 28.0855 | 30.9738 | 32.066 | 35.4527 | 39.948 | | 19
K
39.0983 | 20
Ca
40.078 | 21
Sc
44.9559 | 22
Ti
47.88 | 23
V
50.9415 | 24
Cr
51.9961 | 25
Mn
54.9381 | 26
Fe
55.847 | 27
Co
58.9332 | 28
Ni
58.693 | 29
Cu
63.546 | 30
Zn
65,39 | 31
Ga
69,723 | 32
Ge
72.61 | 33
As
74.9216 | 34
Se
78.96 | 35
Br
79.904 | 36
Kr
83.80 | | 37
Rb
85.4678 | 38
Sr
87.62 | 39
Y
88,9059 | 40
Zr
91,224 | 41
Nb
92,9064 | 42
Mo
95.94 | 43
Tc
(98) | 44
Ru
101.07 | 45
Rh
102.906 | 46
Pd
106.42 | 47
Ag
107.868 | 48
Cd
112.411 | 49
In
114.818 | 50
Sn
118.710 | 51
Sb
121.757 | 52
Te
127.60 | 53
I
126.904 | 54
Xe
131.29 | | 55
Cs
132.905 | 56
Ba | 57
*La | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir
192.22 | 78
Pt
195.08 | 79
Au
196.967 | 80
Hg
200.59 | 81
Tl
204.383 | 82
Pb
207.2 | 83
Bi
208.980 | 84
Po
(209) | 85
At
(210) | 86
Rn
(222) | | | 137.327 | 138.906 | 178.49 | 180.948 | 183.84 | 186.207 | 190.23 | 192.22 | 195.00 | | | | | | | (210) | | | *Lanthanide series | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | |------------------------------|---------|---------|---------|---------|--------|---------|--------|-----------|--------|-----------|--------|---------|--------|---------| | | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | | | 140.115 | 140.908 | 144.24 | (145) | 150.36 | 151.965 | 157.25 | 158.925 | 162.50 | 164.930 | 167.26 | 168.934 | 173.04 | 174.967 | | [†] Actinide series | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | | | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | | | 232.038 | 231.036 | 238.029 | 237.048 | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (262) |