CHEM 130 Quiz 5 – Oct. 7, 2011 Complete the following problems. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units. - 1. Write overall reactions and net ionic equations for the following. Identify the states of the products in the reaction. (8 points). - a. Aqueous sodium carbonate reacts with aqueous silver nitrate. Overall Reaction: $Na_2CO_3(aq) + 2 AgNO_3(aq) \rightarrow Ag_2CO_3(s) + 2 NaNO_3(aq)$ Net Ionic Reaction: $2 \text{ Ag}^+(\text{aq}) + \text{CO}_3^{2-}(\text{aq}) \rightarrow \text{Ag}_2\text{CO}_3(\text{s})$ b. Aqueous calcium hydroxide reacts with aqueous sulfuric acid. Overall Reaction: $Ca(OH)_2(aq) + H_2SO_4(aq) \rightarrow 2 H_2O(\ell) + CaSO_4(s)$ Net Ionic Reaction: Same as overall reaction since all ions undergo some change 2. Balance the oxidation-reduction reaction below in acidic solution.(9 pts.) $$S_2O_3^{2-} + MnO_4^{-} \rightarrow SO_4^{2-} + Mn^{2+}$$ Oxidation: $S_2O_3^{2^-} + 5H_2O \rightarrow 2SO_4^{2^-} + 10H^+ + 8e^-$ Reduction: $MnO_4^- + 8H^+ 5e^- \rightarrow Mn^{2^+} + 4H_2O$ Combine equations: $$\begin{array}{c} 5(S_2O_3^{2^-} + 5H_2O \rightarrow 2SO_4^{2^-} + 10H^+ + 8e^-) \\ 8(MnO_4^- + 8H^+ 5e^- \rightarrow Mn^{2^+} + 4H_2O) \\ 5S_2O_3^{2^-} + 25H_2O + 8MnO_4^- + 64H^+ 40e^- \rightarrow 10SO_4^{2^-} + 50H^+ + 40e^- + 8Mn^{2^+} + 32H_2O \end{array}$$ Cancelling redundant terms: $$5S_2O_3^{2-} + 8MnO_4^{-} + 14H^+ \rightarrow 10SO_4^{2-} + 8Mn^{2+} + 7H_2O_4^{-}$$ 3. An iron ore sample weighing 0.9132 g is dissolved in HCl(aq), and the iron is obtained as Fe²⁺(ag). This solution is then titrated with 28.72 mL of 0.05051 M K₂Cr₂O₇(ag) using the balanced reaction below. What is the mass percent of iron in the iron ore? (9 pts) $$6Fe^{2+} + 14H^{+} + Cr_{2}O_{7}^{2-} \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_{2}O$$ $$0.02872 \text{ L x } \underbrace{0.05051 \text{ mol } \text{Cr}_2 \text{O}_7^{2^-}}_{\text{1 L}} \text{ x } \underbrace{\begin{array}{c} 6 \text{ mol } \text{Fe}^{2^+} \\ 1 \text{ mol mol } \text{Cr}_2 \text{O}_7^{2^-} \end{array}}_{\text{1 mol } \text{Fe}^{2^+}} \text{ x } \underbrace{\begin{array}{c} 1 \text{ mol } \text{Fe} \\ 1 \text{ mol } \text{Fe}^{2^+} \end{array}}_{\text{1 mol } \text{Fe}} \text{ x } \underbrace{\begin{array}{c} 55.847 \text{ g Fe} \\ 1 \text{ mol } \text{Fe} \end{array}}_{\text{1 mol } \text{Fe}} = 0.4860_8 \text{ g Fe}$$ $$0.4860_8$$ g Fe 0.9132 g ore x 100% = **53.23** % Fe ## **Possibly Useful Information** ## TABLE 5.1 **Solubility Guidelines for Common Ionic Solids** Follow the lower-numbered guideline when two guidelines are in conflict. This leads to the correct prediction in most cases. - 1. Salts of group 1 cations (with some exceptions for Li⁺) and the NH₄⁺ cation are - 2. Nitrates, acetates, and perchlorates are soluble. - 3. Salts of silver, lead, and mercury(I) are insoluble. - 4. Chlorides, bromides, and iodides are soluble. - 5. Carbonates, phosphates, sulfides, oxides, and hydroxides are insoluble (sulfides of group 2 cations and hydroxides of Ca²⁺, Sr²⁺, and Ba²⁺ are slightly soluble). 6. Sulfates are soluble except for those of calcium, strontium, and barium. | TABLE 5.3 | Some Common Gas-Forming Reactions | |------------------------------|---| | lon | Reaction | | HSO ₃ | $HSO_3^- + H^+ \longrightarrow SO_2(g) + H_2O(l)$ | | SO_3^{2-} | $SO_3^{2-} + 2 H^+ \longrightarrow SO_2(g) + H_2O(l)$ | | HCO_3^- | $HCO_3^- + H^+ \longrightarrow CO_2(g) + H_2O(l)$ | | CO_3^{2-} | $CO_3^{2-} + 2 H^+ \longrightarrow CO_2(g) + H_2O(l)$ | | S ²⁻ | $S^{2-} + 2 H^+ \longrightarrow H_2S(g)$ | | NH ₄ ⁺ | $NH_4^+ + OH^- \longrightarrow NH_3(g) + H_2O(l)$ | | 1 | | | | | | | | | | | | | | | | | 18 | |----------------------------|---------------------|----------------------|--------------------|---------------------|---------------------|---------------------|--------------------|---------------------|--------------------|----------------------------|---------------------|---------------------|---------------------|----------------------------|--------------------|---------------------|---------------------| | 1A | | | | | | | | | | | | | | | | | 8A | | 1
H | 2 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 2
He | | 1.00794 | 2A | | | | | | | | | | | 3A | 4A | 5A | 6A | 7A | 4.00260 | | 3
Li
6.941 | 4
Be
9.01218 | | | | | | | | | | | 5
B
10.811 | 6
C
12.011 | 7
N
14.0067 | 8
O
15.9994 | 9
F
18.9984 | 10
Ne
20.1797 | | 11
Na
22.9898 | 12
Mg
24.3050 | 3
3B | 4
4B | 5
5B | 6
6B | 7
7B | 8 | $-\frac{9}{8B}$ | 10 | 11
1B | 12
2B | 13
Al
26.9815 | 14
Si
28.0855 | 15
P
30.9738 | 16
S
32.066 | 17
Cl
35.4527 | 18
Ar
39.948 | | 19
K
39.0983 | 20
Ca
40.078 | 21
Sc
44.9559 | 22
Ti
47.88 | 23
V
50.9415 | 24
Cr
51.9961 | 25
Mn
54.9381 | 26
Fe
55.847 | 27
Co
58.9332 | 28
Ni
58.693 | 29
Cu
63.546 | 30
Zn
65.39 | 31
Ga
69.723 | 32
Ge
72.61 | 33
As
74.9216 | 34
Se
78.96 | 35
Br
79.904 | 36
Kr
83.80 | | 37
Rb
85.4678 | 38
Sr
87.62 | 39
Y
88.9059 | 40
Zr
91.224 | 41
Nb
92.9064 | 42
Mo
95.94 | 43
Tc
(98) | 44
Ru
101.07 | 45
Rh
102.906 | 46
Pd
106.42 | 47
Ag
107.868 | 48
Cd
112.411 | 49
In
114.818 | 50
Sn
118.710 | 51
Sb
121.757 | 52
Te
127.60 | 53
I
126.904 | 54
Xe
131.29 | | 55
Cs
132.905 | 56
Ba
137.327 | 57
*La
138.906 | 72
Hf
178.49 | 73
Ta
180.948 | 74
W
183.84 | 75
Re
186.207 | 76
Os
190.23 | 77
Ir
192.22 | 78
Pt
195.08 | 79
Au
196.967 | 80
Hg
200.59 | 81
Tl
204.383 | 82
Pb
207.2 | 83
Bi
208.980 | 84
Po
(209) | 85
At
(210) | 86
Rn
(222) | | 87
Fr
(223) | 88
Ra
226.025 | 89
†Ac
227.028 | 104
Rf
(261) | 105
Db
(262) | 106
Sg
(266) | 107
Bh
(264) | 108
Hs
(277) | 109
Mt
(268) | 110
Ds
(271) | 111
Rg
(272) | | | | | | | | | | | • | | | | | | | | | | | | | | | | | *Lanthanide series | 58
Ce | 59
Pr | Nd | Pm | Sm | Eu | Gd Gd | Tb | Dy | 67
Ho | 68
Er | 69
Tm | 70
Yb | 71
Lu | |------------------------------|----------|----------|---------|----------|----------|----------|----------|-----------------|----------|-----------------|-----------|-----------|-----------|-----------| | | 140.115 | 140.908 | 144.24 | (145) | 150.36 | 151.965 | 157.25 | 158.925 | 162.50 | 164.930 | 167.26 | 168.934 | 173.04 | 174.967 | | [†] Actinide series | 90
Th | 91
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | 98
Cf | 99
Es | 100
Fm | 101
Md | 102
No | 103
Lr | | | 232.038 | 231.036 | 238.029 | 237.048 | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (262) | Copyright © 2007 Pearson Prentice Hall, Inc.