CHEM 130 Quiz 4 – Sept. 30, 2011

Complete the following problems. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units.

In the laboratory, you weigh out 0.114 grams of solid AlCl₃•6H₂O (molar mass 241.43 g/mol), dissolve it, and dilute it to a total volume of 100.0 mL to make solution A. You then transfer 3.00 mL of solution A into a 25.0 mL volumetric flask and dilute to the mark to make solution B. What is the molarity of aluminum ion in solution B? 9 pts.)

 The 50.0 g Ca(OCI)₂ (molar mass 142.98 g/mol) and 275 mL of 3.00 M HCI are allowed to react in the reaction below. If 15.8 g of Cl₂ is produced, what is the percent yield for the reaction? (9 pts.)

 $Ca(OCI)_2(s) + 4HCI (aq) \rightarrow 2CI_2(g) + CaCI_2(aq) + 2H_2O(I)$

Write the net ionic equation and overall reaction for each of the following: (8 pts.)
a. CuCl₂(aq) + KOH(aq) →

b. aqueous ammonium sulfate reacts with aqueous calcium nitrate

Possibly Useful Information

TABLE 5.1 Solubility Guidelines for Common Ionic Solids

Follow the lower-numbered guideline when two guidelines are in conflict. This leads to the correct prediction in most cases.

- 1. Salts of group 1 cations (with some exceptions for Li^+) and the NH_4^+ cation are soluble.
- 2. Nitrates, acetates, and perchlorates are soluble.
- 3. Salts of silver, lead, and mercury(I) are insoluble.
- 4. Chlorides, bromides, and iodides are soluble.
- 5. Carbonates, phosphates, sulfides, oxides, and hydroxides are insoluble (sulfides of group 2 cations and hydroxides of Ca²⁺, Sr²⁺, and Ba²⁺ are slightly soluble).
- 6. Sulfates are soluble except for those of calcium, strontium, and barium.

	-																
1																	18
1A																	8A
1 H	2											13	14	15	16	17	2 He
1.00794	2A											3A	4A	5A	6A	7A	4.00260
3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
11 Na 22.9898	12 Mg 24,3050	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al 26.9815	14 Si 28.0855	14.0067 15 P 30.9738	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K	24.5050 20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9381	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.818	118.710	121.757	127.60	126.904	131.29
55 Cs 132.905	56 Ba 137.327	57 *La 138.906	72 Hf 178.49	73 Ta 180.948	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.967	80 Hg 200.59	81 Tl 204.383	82 Pb 207.2	83 Bi 208.980	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr	88 Ra	⁸⁹ †Ac	178.49 104 Rf	105 Db	106 Sg	107 Bh	108 Hs	192.22 109 Mt	195.08 110 Ds	111 Rg	200.59	204.383	207.2	208.980	(209)	(210)	(222)
(223)	226.025	227.028	(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)							
*Lanthanide series				58 Ce 140.115	59 Pr 140.908	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.965	64 Gd 157.25	65 Tb 158.925	66 Dy 162.50	67 Ho 164.930	68 Er 167.26	69 Tm 168.934	70 Yb 173.04	71 Lu 174.967

Copyright © 2007 Pearson Prentice Hall, Inc.

95

Am

(243)

96

Cm

(247)

97

Bk

(247)

94

Pu

(244)

99

Es

(252)

98

Cf

(251)

100

Fm

(257)

101

Md

(258)

102

No

(259)

103

Lr

(262)

93

Np

237.048

92

U

238.029

91

Pa

231.036

90

Th

232.038

[†]Actinide series