MS Goals and Applications

• Several variations on a theme, three common steps
 – Form gas-phase ions
 • choice of ionization method depends on sample identity and information required
 – Separate ions on basis of m/z
 • “Mass Analyzer”
 • analogous to monochromator, changing conditions of analyzer results in different ions being transmitted
 – Detect ions
 • want (need) high sensitivity
 – “Resolution”

MS Goals and Applications

• All MS experiments are conducted under vacuum, why?
 – Mean free path (\(\lambda\)):
 \[
 \lambda = \frac{RT}{\sqrt{2} \pi d^2 N_A P} \approx \frac{5 \text{ cm}}{\text{mtoorr}}
 \]

• Ion Optics: Electric and magnetic fields induce ion motion
 – Electric fields most common: Apply voltage, ions move
 – Magnetic fields are common in mass analyzers. “Bend” ions paths (Remember the right hand rule?)
MS Figures of Merit:

Resolving Power and Resolution

- Relate to ability to distinguish between m/z
 - Defined at a particular m/z

- **Resolving Power, Resolution...**
 - Variety of definitions
 - Δm at a given m

 \[
 \text{Resolving Power} = \frac{m}{\Delta m}
 \]

 \[
 \text{Resolution} = \frac{m}{\Delta m}
 \]

MS Components: Mass Analyzers

- **Magnetic Sector Mass Analyzers**
 - Accelerate ions by applying voltage (V)
 - velocity depends on mass and charge (m/z)

 \[
 KE = \frac{1}{2} mv^2
 \]

 - Electromagnet introduces a magnetic field (variable)
 - The path on an ion through the sector is driven by magnetic force and centripetal force

 - For an ion to pass through, These must be equal

 \[
 F_m = BzeV = \frac{mv^2}{r} = F_c \quad \Rightarrow \quad \frac{m}{z} = \frac{B^2 r^2 e}{2V}
 \]

 - For a given geometry (r), variation in B or V will allow different ions to pass
 - “Scanning” B or V generates a mass spectrum
MS Components: Mass Analyzers

• In practice, ions leaving the source have a small spread of kinetic energies (bandwidth?)
 \[R = \frac{m}{\Delta m} \leq 2000 \text{ for mag. sector alone} \]

• Result is a spread in paths through magnetic field
 – leads to broadened bands and decreased resolution

• Problem is minimized using *Double Focusing MS*
 – Two sectors:
 • Electrostatic sector focuses on the basis of translation energy: “Energy Analyzer”
 • Magnetic sector focuses on the basis of momentum: “Momentum Analyzer”
 – Results in better M/Z discrimination and higher resolution (up to 100,000!).
 – Often more $$$
MS Components: Mass Analyzers

- **Quadrupole Mass Filter**
 - Opposing AC voltage applied between pairs of rods
 - $U_{dc} + V \cos \omega t$ and $-(U_{dc} + V \cos \omega t)$
 - Because of positive potential superimposed on AC, quad acts as high-pass mass filter in plane with positive DC offset
 - Because of negative potential, quad acts as a low-pass mass filter in plane with negative DC offset.

- By changing AC and DC potentials, different m/z will have "stable" trajectories
 - acts like a "notch" filter!
 - Tunable up to $m/z \sim 4000$ with unit mass resolution

- Many benefits over Double Focusing
 - Smaller, Less Expensive
 - More Rugged
 - Possible to "scan" spectra in <0.1 sec

- Can’t get the high resolution like double focusing!
MS Components: Mass Analyzers

- **Ion Traps**
 - Ions are "stored" and selectively cycled out

- **Quadropole Ion Trap (QIT)**
 - Similar concept to quadropole
 - RF and DC electric fields
 - Only certain m/z are "stable"

- **FT-Ion Cyclotron Resonance (FT-ICR)**
 - Magnetic field traps ions
 - RF pulse is added to augment motion
 - Current at receiver relates to m/z
 - http://www.magnet.fsu.edu/education/tutorials/magnetacademy/fticr/

MS Components: Mass Analyzers

- **Time of Flight Mass Analyzer:**
 - "Pulse" of ions are accelerated into analyzer
 - Very small range of kinetic energies (ideally all have same KE)
 - Since masses vary, velocity must also vary
 - Ions enter a field-free region, the *drift tube*, where they are separated on the basis of their velocities
 - Lighter ions (smaller m/z) arrive at the detector first, heavier ions (larger m/z) arrive later

MS Components: Mass Analyzers

- Potential for very fast analysis (sub millisecond)
- Simple instrumentation
- Resolution depends on applied voltage (kinetic energy) and flight time
 - use internal standards to calibrate
 - Resolution is enhanced by use of **reflectron**
 - Like a concave "ion mirror"

MS Components: Detectors

- Two common types of detectors:
 - Faraday Cup
 - Electron Multiplier

- **Faraday Cup**
 - Ions are accelerated toward a grounded "collector electrode"
 - As ions strike the surface, electrons flow to neutralize charge, producing a small current that can be externally amplified.
 - Size of this current is related to # of ions in
 - No internal gain → less sensitive
MS Components: Detectors

- **Electron Multiplier**
 - Analogous to PMT
 - Durable, applicable to most analyzers
 - Ions strike surface of dynode
 - Generate electrons
 - $>1 \text{ e}^-/\text{ion}$
 - Ejected electrons are accelerated to other dynodes
 - $>1 \text{ e}^- \text{out/e}^-\text{in}$
 - Current is related to number of ions in times large gain (107 or so)

- **Single channel vs. array detectors**
 - “Single” m/z vs “whole spectrum at a time”
 - Often a tradeoff between sensitivity and speed

- **Microchannel Plate**
 - Converts ions to electrons
 - Gains approaching electron multipliers
 - $\sim 10^4$ for single, more if “stacked”
 - Electrons can be detected in two dimensions.
 - One approach: convert electrons to photons and use optical detection (i.e. camera!)
MS Components: Sources

- Ion sources are the component with the greatest number of variations
- Choice of source depends on identity of analyte
 - solid/liquid
 - organic/inorganic
 - reactive/nonreactive
- Common requirements of sources
 - produce ions!
 - Ideally small spread in kinetic energies
 - Produce ions uniformly, without mass discrimination
 - Accelerate ions into analyzer
 - Series of ion optics

MS Components: Atomic Sources

- **Inductively Coupled Plasma**: Atmospheric pressure discharge
- Relatively high argon flow rate (Liters per minute)
- After ignition, coupling of ionic charge with RF magnetic field “forces” ions to move
 - Heating results, plasma is sustained
MS Components: Atomic Sources

• **The ICP as an ionization source:**
 - High temperature in the source results in the formation of ions
 • best for atomic mass spec.
 - Challenges:
 • How do we get from atmospheric pressure in the ICP to vacuum in the MS without filling the MS with argon?
 • How do we keep the high temperature of the ICP from melting/ionizing components of the MS instrument?

MS Components: Atomic Sources

• Pressure is reduced by inserting a cooled cone (sampler) into the plasma. This allows only a small fraction of the plasma material to pass.
 - mechanical pump maintains lower pressure of ~1 torr
• A small fraction of this material passes through a second cone (the skimmer) into the high vacuum chamber
 - ion optics accelerate the ions into the mass analyzer
• Typically used with quadrupoles.
 - Unit mass resolution up to ~1000-2000
 - Large LDR
• Isobaric Interference
• Polyatomic ions
• Matrix effects (refractory oxides…)

http://iramis.cea.fr/Images/astImg/886_1.jpg
MS Components: Hard vs Soft Sources

- Parent or Molecular Ion Formation
 - needed to establish molecular weight

- Hard (energetic) sources leads to excited-state ions and fragmentation
 - Good for structural information

- Soft sources cause little fragmentation
 - Good for molecular weight determination

Molecular Ionization Sources

- More exist than are on this list!
- Need to transfer energy to analyte and ultimately produce ions.
 - Mechanism determines the extent of fragmentation

<table>
<thead>
<tr>
<th>Basic Type</th>
<th>Name and Acronym</th>
<th>Ionizing Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas phase</td>
<td>Electron impact (EI)</td>
<td>Energetic electrons</td>
</tr>
<tr>
<td>Desorption</td>
<td>Chemical ionization (CI)</td>
<td>Reagent gaseous ions</td>
</tr>
<tr>
<td></td>
<td>Field ionization (FI)</td>
<td>High-potential electrode</td>
</tr>
<tr>
<td></td>
<td>Field desorption (FD)</td>
<td>High-potential electrode</td>
</tr>
<tr>
<td></td>
<td>Electrospray ionization (ESI)</td>
<td>High electrical field</td>
</tr>
<tr>
<td></td>
<td>Matrix-assisted desorption-ionization (MALDI)</td>
<td>Laser beam</td>
</tr>
<tr>
<td></td>
<td>Plasma desorption (PD)</td>
<td>Fission fragments from 252Cf</td>
</tr>
<tr>
<td></td>
<td>Fast atom bombardment (FAB)</td>
<td>Energetic atomic beam</td>
</tr>
<tr>
<td></td>
<td>Secondary-ion mass spectrometry (SIMS)</td>
<td>Energetic beam of ions</td>
</tr>
<tr>
<td></td>
<td>Thermospray ionization (TS)</td>
<td>High temperature</td>
</tr>
</tbody>
</table>

© 2007 Thomson Higher Education
MS Components: Molecular Sources

- **Electron Ionization (EI or Electron Impact):**
 - Sample is vaporized by heating and “leaked” into source
 - Electrons are formed at a hot filament and accelerated across the path of the sample gas
 - As electrons “impact” gas molecules, ionization may occur (electrostatic repulsion). Forms “molecular ion”
 \[
 M + e^- \rightarrow M^{+} + 2e^-
 \]

- **EI cont’d**
 - High energy of electrons results in excited state ions
 - energy may be lost through collisions or reactions
 - Results in fragmentation of molecular ion to form daughter ions
 - Reactions may be unimolecular (fragmentation, rearrangement) or bimolecular
 - “Hard” ionization source
 - Fragmentation pattern is characteristic of molecule → Structure Identification

- **Chemical Ionization (CI):**
 - Excess of small, gaseous molecule is added to ionization chamber
 - Odds of collision of e⁻ produced by filament with the additive >> than with analyte
 - Result is production of ionized additive species
 - These less-energetic ions serve to ionize analyte
MS Components: Molecular Sources

- CI Example: methane
 - Forms CH_4^+, CH_3^+, CH_2^+ by ionization
 - These ions react to form primarily CH_5^+ and C_2H_5^+
 - Analyte (MH) is ionized by proton transfer or hydride transfer

\[
\begin{align*}
\text{CH}_5^+ + \text{MH} \rightarrow & \text{MH}_2^+ + \text{CH}_4 \\
\text{C}_2\text{H}_5^+ + \text{MH} \rightarrow & \text{MH}_2^+ + \text{C}_2\text{H}_4 \\
\text{C}_2\text{H}_5^+ + \text{MH} \rightarrow & \text{M}^+ + \text{C}_2\text{H}_6
\end{align*}
\]

- Result is a spectrum dominated by (M+1)$^+$ or (M-1)$^+$ peaks and little fragmentation
- Soft Ionization Source!

• **Field Ionization**
 - Gas flows past “emitter” subject to large electric field
 - Electron tunneling causes ionization
 - Little fragmentation

MS Components: Molecular Sources for Nongaseous Samples

• Applicable to large molecules, nonvolatile species

• **Electrospray Ionization (ESI):**
 - Atmospheric pressure method
 - Sample is pumped through a needle that is held at high voltage compared to cylindrical electrode
 - Produces fine spray of charged droplets
 - As solvent evaporates, charge density increases → ionization
 - Often produces multiply charged ions: good for large molecules!
 - Making elephants fly!
MS Components: Molecular Sources for Nongaseous Samples

• **Matrix-Assisted Laser Desorption/Ionization (MALDI)**
 - Sample is placed in a matrix containing a good optical absorber (chromophore), solvent is removed
 - Sample is irradiated with a pulsed laser. Absorption by matrix aids in sublimation/ionization of analyte (HOW?)
 - Essentially no fragmentation! Good for big molecules (biopolymers, etc.)

Figure 5.11 The MALDI mass spectrum of a mouse monoclonal antibody. The matrix and van der Waals and the laser radiation used was 266 nm. (Reprinted from Kauer and Fenselau, with permission from Elsevier.)

• **Fast Atom Bombardment (FAB):**
 - Molecule dispersed in a glycerol matrix, bombarded by a beam of atoms from an *atom gun* (energetic)
 - Energy transfer results in production of positive and negative ions, matrix helps to aid ejection

Figure 5.12 Schematic FAB ionization source. The sample, dissolved in solvent, is spread in a thin film on the end of a metal probe and bombarded by fast-moving argon atoms. Both positive and negative ions are produced.
“New” Ionization Methods

- **DESI** – Desorption Electrospray Ionization
 - Minimal sample prep
 - Imaging capabilities

- **DART** – Direct Analysis in Real Time
 - Interaction between metastables and analyte
 \[M^* + A \rightarrow A^{*'} + M + e^- \]
 - No sample prep!

- **APCI** - Atmospheric Pressure Chemical Ionization
 - Typically coupled with HPLC
Hyphenated MS Techniques

- **Tandem MS (MS-MS):**
 - Multiple MS (often quads) coupled together.
 - Each serves a different purpose
 - Soft ionization source produces parent ions that are filtered by the first MS
 - Field-free region is filled with inert gas to allow collisions and fragmentation, producing “daughter ions”
 - Daughter ions are analyzed
 - Since each MS can be scanned, several applications are possible: separations,

Ion Mobility Spectrometry – Mass Spectrometry

- Separation in two dimensions
 1. Size to charge
 2. Mass to charge

- Application particularly for large molecules
Hyphenated MS Techniques

- **GC-MS**
 - Need to deal with the presence of carrier gas and the pressure difference b/w GC and MS
 - Capillary GC is usually no problem
 - Packed Column GC can be a problem
 - Use “jet separator” to remove carrier gas
 - Typically combined with quads, but also ion-trap detectors: fast scans for rapid separations
 - Detection modes: Total ion chromatogram, Selected ion chromatogram or Mass spectra
 - Possible 3-D data containing separation and identification!

Hyphenated MS Techniques

- **LC-MS**
 - HUGE difference b/w LC and MS conditions
 - Interface is critical
 - Many variations (thermospray, electrospray), nothing is ideal (yet)
 - Most common are ESI and Atmospheric Pressure Chemical Ionization (APCI)
Hyphenated MS Techniques

- **CE-MS**
 - CE is probably best suited for coupling to MS
 - low volume flow rates
 - ESI is most common
 - “End” of the capillary is metalized
 - Allows application of potential for both separation and ionization
 - $E_{\text{injection}} > E_{\text{ionization}} > \text{ground}$

![Diagram of CE-MS setup](image)

Strategies for Quantitation (not exclusive to MS)

- Key challenges involve two considerations
 - Instrument limitations
 - Sample limitations
- Ideally, choose the simplest method that provides required level of accuracy and precision
 - Basic calibration curve
- Internal Standards
 - Deal with precision issues by measuring a relative signal of Int. Standard and Analyte
 - Internal Standard and Analyte are different species!
Strategies for Quantitation (not exclusive to MS)

- Standard Additions
 - Often components present in an analyte sample (other than the analyte itself) also contribute to an analytical signal, causing **matrix effects**.
 - It is difficult to know exactly what is present in a sample **matrix**, so it is difficult to prepare standards.
 - Possible to minimize these effects by employing **standard additions**
 - Add a known amount of standard to the sample solution itself.
 - Perform the analysis.
 - The resulting signal is the sum of the signal for the sample and the standard.
 - By varying the concentration of the standard in the solution, it is possible to extract a value for the response of the unknown itself.

Strategies for Quantitation (not exclusive to MS)

- Graphical Approach to Standard Add's:

<table>
<thead>
<tr>
<th>Hg added (ppm)</th>
<th>Current (μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.66</td>
</tr>
<tr>
<td>9.36</td>
<td>6.76</td>
</tr>
<tr>
<td>18.72</td>
<td>8.83</td>
</tr>
<tr>
<td>28.08</td>
<td>10.86</td>
</tr>
<tr>
<td>37.44</td>
<td>12.8</td>
</tr>
</tbody>
</table>

- Unknown concentration is derived by extrapolating line to x-intercept.
Strategies for Quantitation
(not exclusive to MS)

• Isotope dilution - more MS exclusive
 – Artificially change isotope ratios of a sample by spiking with isotope-enriched standard
 • Standard has same identity as analyte, but different, and known, isotopic abundance.
 • Analyte has natural abundance (typically)
 – Measured isotope ratio from MS reflects combination of analyte and spike signal
 • Signal at m/z for isotope A = f(C_{unk}F_X + C_{spike}F_X,spike)
 • Signal at m/z for isotope B = f(C_{unk}F_X + C_{spike}F_X,spike)
 C = total concentration of all isotopes of element
 F_X = Fractional abundance of isotope X
 – Since we know F_X, F_{X,spike}, and C_{spike}, a little algebra gets us to C_{unk}