Chem 130	Name
Exam 1, Ch 1-4	September 23, 2011
100 FOILIS	

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part 0: Warmup. 4 points each

- 1. Which of the following aspects of Dalton's atomic theory remains unchanged in our current understanding:
 - a. Atoms are indivisible.
 - b. All atoms of a particular element are identical.
 - c. Compounds are the result of a combination of two or more Answer ____C____ different kinds of atoms in fixed ratios.
 - d. None of the above.
- 2. Thallium has two stable isotopes, ²⁰³TI and ²⁰⁵TI. Given that the atomic mass of thallium is 204.383 amu, which isotope must have the larger natural abundance?
 - a. ²⁰³TI
 - b. ²⁰⁵TI
 - c. Both have the same natural abundance.

Answer _____B_____

d. Not enough information to make this determination.

Part I: Complete all of problems 3-9

- Define the following using a maximum of two sentences for each definition. (8 points)

 accuracy: The proximity of a data point to the "true value"
 - b. precision: The reproducibility of a measurement or set of data.

4.	Complete the following	g table.	(12 points)	
----	------------------------	----------	-------------	--

Symbol	⁴⁰ Ca ²⁺	⁵⁸ Ni	³⁴ S ²⁻
# of protons	20	28	16
# of neutrons	20	30	16
# of electrons	18	28	18
Charge	+2	0	-2
Name	calcium-40 ion	nickel-58	sulfide ion

5. Name the following compounds or provide the correct formula for the given names. (18 pts)

a.	iron (III) sulfate	Fe ₂ (SO ₄) ₃
b.	calcium chloride	CaCl ₂
c.	N ₂ O ₅	dinitrogen pentoxide
d.	diphosphorous tetrafluoride	P ₂ F ₄
e.	$AI_2(CO_3)_3$	aluminum carbonate
f.	Cr(PO ₄) ₂	chromium (VI) phosphate

6. A solution consisting of 8.50% acetone and 91.50% water by mass has a density of 0.9867 g/mL. What mass of acetone, in kg, is present in 7.50 L of the solution? (8 pts)

7500 mL x 0.9867 g soln x 8.50 g acetone x 1 kg = 0.629 kg acetone mL 100 g soln 10^3g

- 7. Write balanced reactions, specifying the state for all reactants and products. (8 points)
 - a. Aqueous copper (I) sulfate reacts with aqueous barium iodide to produce solid barium sulfate and aqueous copper (I) iodide.

 Cu_2SO_4 (aq) + Bal_2 (aq) $\rightarrow BaSO_4$ (s) + 2Cul (aq)

b. Aqueous sodium carbonate reacts with gaseous nitrogen monoxide and oxygen gas to produce aqueous sodium nitrate and carbon monoxide gas.

 Na_2CO_3 (aq) + 2 NO (g) + O_2 (g) \rightarrow 2 NaNO₃ (aq) + CO (g)

8. How many ²⁰⁴Pb atoms are in a piece of lead weighing 215 mg? The percent natural abundance of lead is 1.4%. (8 points)

 $0.215 \text{ g-Pb } x \underbrace{1 \text{ mol Pb}}_{207.2 \text{ g-Pb}} x \underbrace{6.02 \times 10^{23} \text{ atoms Pb}}_{1 \text{ mol Pb}} x \underbrace{1.4 \text{ atoms }^{204} \text{Pb}}_{100 \text{ atoms Pb}} = 8.8 \text{ x } 10^{18 \text{ 204}} \text{Pb atoms}$

Part II. Answer three (3) of problems 9-12. Clearly mark the problem you do not want graded. 10 points each.

Ammonia can be generated by heating together the solids Ca(OH)₂ and NH₄Cl. CaCl₂ and water are also formed. How many grams of NH₃ will form if 33.0 grams each of NH₄Cl and Ca(OH)₂ are heated? (molar masses (g/mol): NH₄Cl = 53.4912, NH₃ = 17.03056, Ca(OH)₂ = 74.093, CaCl₂ = 110.983, water = 18.0153)

 $2NH_4CI + Ca(OH)_2 \rightarrow CaCI_2 + 2H_2O + 2NH_3$

If NH₄Cl is the limiting reactant, how many grams of ammonium could be produced?

 $33.0 \text{ g NH}_{4}\text{Cl} \times 1 \text{ mol NH}_{4}\text{Cl} \times 2 \text{ mol NH}_{3} \times 17.03056 \text{ g NH}_{3} = 10.51 \text{ g NH}_{3}$ $53.4912 \text{ g NH}_{4}\text{Cl} \times 2 \text{ mol NH}_{4}\text{Cl} \times 1 \text{ mol NH}_{3}$

If Ca(OH)₂ is the limiting reactant, how many grams of ammonium could be produced?

 $33.0 \text{ } \frac{\text{GCa(OH)}_2}{74.093} \times \frac{1 \text{ mol Ca(OH)}_2}{2} \times \frac{2 \text{ mol NH}_3}{1 \text{ mol Ca(OH)}_2} \times \frac{17.03056 \text{ } \frac{1}{9} \text{ NH}_3}{1 \text{ mol NH}_3} = 15.17 \text{ g NH}_3$

Therefore, ammonium chloride must be the limiting reagent, and a maximum of 10.5 grams of ammonia could be produced.

10. Silicon has three stable isotopes, ²⁸Si, ²⁹Si, and ³⁰Si with masses of 27.98 amu, 28.98 amu, and 29.77 amu, respectively. If the natural abundance of ²⁸Si is 92.23%, what are the percent abundances of the other two isotopes?

The total abundance of ²⁹Si, and ³⁰Si must be: 100 - 92.23 = 7.77 %

So: $f_{29} + f_{30} = 0.0777$ where f_x is the fractional abundance of the isotope with mass # x.

And: $(0.9223 \times 27.98) + 28.98f_{29} + 29.77f_{30} = 28.0855$ (This is our definition of atomic mass)

Now we need to find f_{29} and f_{30} :

$$\begin{split} f_{30} &= 0.0777 - f_{29} \\ 28.98f_{29} + 29.77f_{30} &= 28.0855 - (0.9223 \times 27.98) = 2.2795 \\ &\quad 28.98f_{29} + 29.77(0.0777 - f_{29}) = 2.2795 \\ 28.98f_{29} - 29.77f_{29} &= 2.2795 - (29.77 \times 0.0777) = -0.03363 \\ &\quad -0.79f_{29} = -0.03363 \\ &\quad f_{29} = 0.04257 \\ &\quad \text{So, } f_{30} = 0.0777 - 0.04257 = 0.03513 \end{split}$$

So, the percent abundance for ²⁹Si is 4.26% and the percent abundance for ³⁰Si is 3.51%

11. One of the reasons that methamphetamine is such a problem is that it is a relatively small molecule that is fairly easy to synthesize. A molecule of methamphetamine contains only carbon, hydrogen, and nitrogen and has a molar mass of 149.2 g/mol. If methamphetamine is 80.48% C and 9.39% N by mass, what is its molecular formula?

There are several wa	ys to :	solve this proble	m. He	ere is one:		
149.2 g meth	x	80.48 g C	x	1 mol C	=	9.997 mol C
1 mol meth	_	100 g meth	_	12.011 g C		1 mol meth
149.2 g meth	x	9.39 g N	x	1 mol N	=	1.000 mol N
1 mol meth		100 g meth		14.0067 g N		1 mol meth
149.2 g meth	x	10.13 g H	x	1 mol H	=	14.995 mol H
1 mol meth		100 g meth		1.00794 g H		1 mol meth

So, the percent H must be: 100-80.48-9.39 = 10.13%H

So, the likely formula is $C_{9.997}H_{14.995}N_{1.000}$ or, $C_{10}H_{15}N$. Is this really the molecular formula? Check the molar mass:

10(12.011) + 15(1.00794) + 14.0067 = 149.23Therefore, C₁₀H₁₅N must be the molecular formula!

12. Iron ore is impure Fe_2O_3 . When Fe_2O_3 is heated with carbon, metallic iron and carbon monoxide gas are formed. From a sample of ore weighing 938 g, 532 g of pure iron is obtained. What is the percent Fe₂O₃, by mass, in the original ore sample? (molar masses (g/mol): $Fe_2O_3 = 159.6922$, carbon monoxide = 28.010)

$$Fe_2O_3$$
 + 3 C \rightarrow 2 Fe + 3 CO

 $532 \text{ g-Fe} \times \underline{1 \text{ mol-Fe}}_{55.847 \text{ g-Fe}} \times \underline{1 \text{ mol-Fe}_2 \Theta_3}_{2 \text{ mol-Fe}} \times \underline{159.6922 \text{ g-Fe}_2 \Theta_3}_{1 \text{ mol-Fe}_2 \Theta_3} = \textbf{760.6 g-Fe}_2 \textbf{O}_3$

Therefore, 761 grams of Fe_2O_3 must have been present in the original sample. In terms of percent, this corresponds to:

 $\frac{761 \text{ g Fe}_2\text{O}_3}{938 \text{ g ore}} \times 100\% = 81.1\% \text{ Fe}_2\text{O}_3$

Possibly Useful Information

 $N_a = 6.02214 \text{ x } 10^{23} \text{ mol}^{-1}$

D = m/v

[†] Act	*Lar	87 Fr (223)	55 Cs 132.905	37 Rb 85.4678	19 K 39.0983	11 Na 22.9898	3 Li 6.941	1 1A 1 H 1.00794
inide s	ıthanid	88 Ra 226.025	56 Ba 137.327	38 Sr 87.62	20 Ca 40.078	12 Mg 24.3050	4 Be 9.01218	2 2A
eries	e series	89 †Ac 227.028	57 *La 138.906	39 Y 88.9059	21 Sc 44.9559	3в ЗВ	1	
		104 Rf (261)	72 Hf 178.49	40 Zr 91.224	22 Ti 47.88	4B		
90 Th 232.038	58 Ce 140.115	105 Db (262)	73 Ta 180.948	41 Nb 92.9064	23 V 50.9415	5B 2B		
91 Pa 231.036	59 Pr 140.908	106 Sg (266)	74 W 183.84	42 Mo 95.94	24 Cr 51.9961	6B		
92 U 238.029	60 Nd 144.24	107 Bh (264)	75 Re 186.207	43 Tc (98)	25 Mn 54.9381	7B		
93 Np 237.048	61 Pm (145)	108 Hs (277)	76 Os 190.23	44 Ru 101.07	26 Fe 55.847	\sim		
94 Pu (244)	62 Sm 150.36	109 Mt (268)	77 Ir 192.22	45 Rh 102.906	27 Co 58.9332	-8B-		
95 Am (243)	63 Eu 151.965	110 Ds (271)	78 Pt 195.08	46 Pd 106.42	28 Ni 58.693	10		
96 Cm (247)	64 Gd 157.25	111 Rg (272)	79 Au 196.967	47 Ag 107.868	29 Cu 63.546	11 1B		
97 Bk (247)	65 Tb 158.925		80 Hg 200.59	48 Cd 112.411	30 Zn 65.39	12 2B		
98 Cf (251)	66 Dy 162.50		81 Tl 204.383	49 In 114.818	31 Ga 69.723	13 Al 26.9815	5 B 10.811	13 3A
99 Es (252)	67 Ho 164.930		82 Pb 207.2	50 Sn 118.710	32 Ge 72.61	14 Si 28.0855	6 C 12.011	14 4A
100 Fm (257)	68 Er 167.26		83 Bi 208.980	51 Sb 121.757	33 As 74.9216	15 P 30.9738	7 N 14.0067	15 5A
101 Md (258)	69 Tm 168.934		84 Po (209)	52 Te 127.60	34 Se 78.96	16 S 32.066	8 O 15.9994	16 6A
102 No (259)	70 Yb 173.04		85 At (210)	53 I 126.904	35 Br 79.904	17 Cl 35.4527	9 F 18.9984	17 7A
103 Lr (262)	71 Lu 174.967		86 Rn (222)	54 Xe 131.29	36 Kr 83.80	18 Ar 39.948	10 Ne 20.1797	18 8A He 4.00260

Copyright © 2007 Pearson Prentice Hall, Inc.