Form A

	10	
Chem Exam 3 100 Po	3, Ch 7, 19, and a little 14	Name November 11, 2011
probler		ne exam. Show your work on all mathematical and significant figures. Be concise in your answers to
Part 0:	Warmup. 4 points each	
a. b. c.	actions with a positive ΔH^o and a negative Δ spontaneous at all temperatures. non-spontaneous at all temperatures. spontaneous at low temperatures but non-temperatures. non-spontaneous at low temperatures but temperatures.	-spontaneous at high AnswerB
a. b. c.	pontaneous process: will happen quickly. releases large amounts of energy. will continue on its own once begun. is never endothermic.	AnswerC
0.0 a. b. c.	e reaction A + B \rightarrow C + D is second order in 0.12 M ⁻¹ min ⁻¹ . What is the rate of this reactio 6.6 x 10 ⁻⁴ M min ⁻¹ 2.8 x 10 ⁻³ M min ⁻¹ 1.9 x 10 ⁻⁴ M min ⁻¹ 1.5 x 10 ⁻³ M min ⁻¹	
Part I:	Complete all of problems 3-8. 12 points	each.
and a. CO	reach of the statements below, indicate whe dijustify your choice in no more than two senses two gases mix, ΔS is positive. **RRECT: As gases mix, the "disorder" or nureases. As a result, entropy increases as well as the statement of the stat	umber of microstates with the same energy
INC		positive. The set of

c. Molecules in a liquid state have higher entropy than molecules in the gaseous state.

INCORRECT: As we go from a liquid to a gas, the number of microstates with the same energy increases, leading to an increase in entropy.

5. A coffee-cup calorimeter contains 100.0 mL of 0.300 M HCl at 20.3°C. When 1.82 g zinc metal also at 20.3°C is added and is allowed to react, the temperature rises to 30.5°C. What is the heat of reaction per mole of Zn? Assume no heat is lost during the course of the reaction and that the heat capacity and the density of the solution is the same as that of pure water.

$$Zn(s) + 2H^{+}(aq) \rightarrow Zn^{2+}(aq) + H_{2}(g)$$

We first need to determine if all of the zinc will react. How many mL HCl will we need?

1.82 g Zn x
$$\frac{1 \text{ mol Zn}}{65.39 \text{ g Zn}}$$
 x $\frac{2 \text{ mol H}^+}{1 \text{ mol Zn}}$ x $\frac{1000 \text{ mL}}{0.300 \text{ mol H}^+}$ = 185 mL

So, HCl is the limiting reagent:

$$n_{HCI}\Delta H_{rxn} = -mc\Delta T$$

 $(0.100 \text{ L} \times 0.300 \text{ mol HCI/L})\Delta H_{rxn} = -(101.82 \text{ g})(4.184 \text{ J/g}^{\circ}\text{C})(30.5^{\circ}\text{C} - 20.3^{\circ}\text{C})$

$$\Delta H_{rxn} = \frac{-(101.82 \text{ g})(4.184 \text{ J/g}^{\circ}\text{G})(10.2^{\circ}\text{G})}{(0.100 \pm \text{x} \ 0.300 \text{ mol HCl/δ})} = \frac{144.8 \text{ kJ}}{\text{mol HCl}} \times \frac{\text{z}}{1 \text{ mol Zn}} = \frac{-289.7 \text{ kJ}}{\text{mol Zn}}$$

(If you make the incorrect assumption that Zn is the limiting reagent, you find DH = -156 kJ/mol Zn.)

6. Determine ΔH^0 for the reaction $N_2H_4(I) + 2H_2O_2(I) \rightarrow N_2(g) + 4H_2O(I)$ from these data:

Reaction	ΔH°
$N_2H_4(I) + O_2(g) \rightarrow N_2(g) + 2H_2O(I)$	-622.2 kJ
$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(I)$	-285.8 kJ
$H_2(g) + O_2(g) \rightarrow H_2O_2(I)$	-187.8 kJ

The first reaction is left alone:	$N_2H_4(I) + O_2(g) \rightarrow N_2(g) + 2H_2O(I)$	-622.2 kJ
Double the second reaction	$2(H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(I))$	2(-285.8 kJ)
Reverse and double the third rxn:	$2(H_2O_2(I) \to H_2(g) + O_2(g))$	-2(-187.8 kJ)

Overall Reaction:

$$\begin{array}{c} N_2H_4(I) + Q_2(g) + 2H_2(g) + Q_2(g) + 2H_2O_2(I) \rightarrow N_2(g) + 2H_2O(I) + 2H_2O(I) + 2H_2(g) + 2Q_2(g) \\ N_2H_4(I) + 2H_2O_2(I) \rightarrow N_2(g) + 4H_2O(I) \end{array}$$

$$\Delta H^{0} = -622.2 \text{ kJ} + (2(-285.8 \text{ kJ})) + (-2(-187.8 \text{ kJ})) = -818.2 \text{ kJ}$$

7. Determine the standard enthalpy of formation of hexane, $C_6H_{14}(I)$, from the information below. Report your result in units of kJ per mole of hexane.

$$2 C_6 H_{14}(I) + 19 O_2(g) \rightarrow 12 CO_2(g) + 14 H_2O(I)$$
 $\Delta H^{\circ} = -8326 \text{ kJ}$

Species	ΔH° _f , kJ mol ⁻¹	S° _f , J mol ⁻¹ K ⁻¹	ΔG° _f , kJ mol ⁻¹
O ₂ (g)	0	205.1	0
$H_2(g)$	0	130.7	0
C(s, graphite)	0	5.74	0
CO ₂ (g)	-393.5	213.7	-394.4
H ₂ O(I)	-285.8	69.91	-237.1
H ₂ O(g)	-241.8	188.8	-228.6

$$\Delta H^{\circ}_{rxn} = 12\Delta H^{\circ}_{f, CO2} + 14\Delta H^{\circ}_{f, H2O} - (2\Delta H^{\circ}_{f, C6H14} + 19\Delta H^{\circ}_{f, O2})$$

$$-8326 \text{ kJ} = 12(-393.5 \text{ kJ}) + 14(-285.8 \text{ kJ}) - (2\Delta H^{\circ}_{f, C6H14} + 19(0 \text{ kJ}))$$

$$\Delta H^{\circ}_{f, C6H14} = \underline{-8326 \text{ kJ} - 12(-393.5 \text{ kJ}) - 14(-285.8 \text{ kJ})}_{-2} = -198.6 \text{ kJ/mol } C_6 H_{14}$$

8. For the reaction, $2 \text{ NO(g)} + \text{Cl}_2(g) \rightarrow 2 \text{ NOCI(g)}$, $\Delta H^o = -40.9 \text{ kJ}$. At what temperatures do you expect the reaction to be spontaneous: high, low, all, or none? Justify your answer.

If we look at the reaction, there are three moles of gas on the reactant side and only two moles of gas on the product side, therefore, we expect the ΔS for this process to be negative. So, we will have a situation where we have a negative ΔH and a negative ΔS . Since $\Delta G = \Delta H - T\Delta S$, the spontaneity of the reaction will depend on temperature. In order for ΔG to be negative and have a spontaneous reaction, temperature must be low in order for $\Delta H - T\Delta S$ to remain negative. Therefore, we expect this reaction to be spontaneous at low temperatures.

Part II. Answer two (2) of problems 9-11. Clearly mark the problems you do not want graded. 15 points each.

9. The initial rate of the reaction $A + B \rightarrow C + D$ is determined for different initial conditions, with the results listed in the table below. Determine the rate law and the rate constant for the reaction.

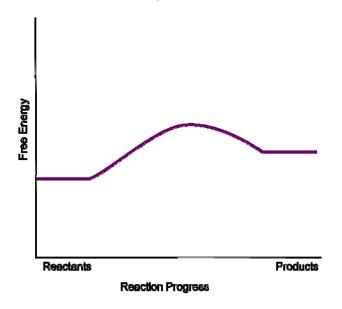
Experiment	[A], M	[B], M	Initial Rate (Ms ⁻¹)
1	0.0133	0.0185	3.35 x 10 ⁻⁴
2	0.0133	0.0370	6.75 x 10 ⁻⁴
3	0.0266	0.0370	2.70 x 10 ⁻³
4	0.0266	0.0185	1.35 x 10 ⁻³

Comparing reactions 1 and 2: [A] remains constant, but [B] changes by (0.0370/0.0185) = 2 times. The rate changes by $(6.75 \times 10^{-4}/3.35 \times 10^{-4}) = 2.01$ times. Since the change in rate is the same as the change in concentration, the reaction must be **first order in B**.

Now comparing reactions 2 and 3: [B] remains constant, but [A] changes by (0.0266/0.0133) = 2 times. The rate changes by $(2.70 \times 10^{-3}/6.75 \times 10^{-4}) = 4.00$ times. Since the change in rate is the same as the change in concentration squared, the reaction must be **second order in A**.

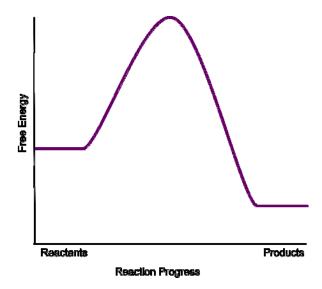
Therefore, the rate law must be: Rate = $k[A]^2[B]$

We can use any experiment to find the value of the rate constant. Let's use experiment 4:


$$k = Rate = 1.35 \times 10^{-3} Ms^{-1} = 103 M^{-2}s^{-1}$$

 $[A]^{2}[B] = (0.0266M)^{2}(0.0185M)$

So, the overall rate law is: Rate = $103 \text{ M}^{-2}\text{s}^{-1} [\text{A}]^2[\text{B}]$


Form A

10. Sketch two reaction coordinate diagrams below. For the first diagram, illustrate a generic reaction that is non-spontaneous and fast in the forward direction. For the second, illustrate a generic reaction that is spontaneous and slow in the forward direction. Clearly label your plots. For each diagram, include a brief description of how it satisfies the spontaneity and speed of the reaction requirements.

Your diagram for the non-spontaneous and fast reaction should bear some resemblance to the picture below and meet the following requirements: 1) the axes must be labeled, 2) the free energy for the reactants must be less than the free energy of the product so that ΔG is positive (non-spontaneous), 3) the size of the activation barrier (hill) must be present, but relatively small to indicate a fast reaction. Your discussion should point out these items.

Your diagram for the spontaneous and slow reaction should bear some resemblance to the picture below and meet the following requirements: 1) the axes must be labeled, 2) the free energy for the reactants must be higher than the free energy of the products so that ΔG is negative (spontaneous), 3) the size of the activation barrier (hill) must be present, and relatively large to indicate a slow reaction. Your discussion should point out these items.

11. Consider the reaction $N_2O(g) + 2H_2O(I) \rightarrow NH_4NO_3(s)$ at 298K.

Species	ΔH° _f , kJ mol ⁻¹	S ^o _f , J mol ⁻¹ K ⁻¹	ΔG ^o _f , kJ mol ⁻¹
O ₂ (g)	0	205.1	0
$H_2(g)$	0	130.7	0
NH ₄ NO ₃ (s)	-365.6	151.1	-183.9
$N_2O(g)$	82.05	219.9	104.2
H ₂ O(I)	-285.8	69.91	-237.1
H ₂ O(g)	-241.8	188.8	-228.6

a. Is the forward reaction exothermic or endothermic?

$$\Delta H^{o}_{rxn} = \Delta H^{o}_{f, NH4NO3} - (\Delta H^{o}_{f, N2O} + 2\Delta H^{o}_{f, H2O})$$

$$\Delta H^{o}_{rxn} = -365.6 \text{ kJ} - (82.05 \text{ kJ} + 2(-285.8 \text{ kJ}))$$

$$\Delta H^{o}_{rxn} = +124 \text{ kJ}$$

Since ΔH° is positive, the reaction is endothermic

b. What is the value of ΔG° at 298 K?

$$\Delta S^{o}_{rxn} = S^{o}_{f, NH4NO3} - (S^{o}_{f, N2O} + 2S^{o}_{f, H2O})$$

$$\Delta S^{o}_{rxn} = 151.1 \text{J/K} - (219.9 \text{J/K} + 2(69.91 \text{J/K}))$$

$$\Delta S^{o}_{rxn} = -209 \text{J/K}$$

$$\Delta G^{o}_{rxn} = \Delta H^{o}_{rxn} - T\Delta S^{o}_{rxn} = +124 \text{kJ} - 298 \text{K}(0.209 \text{kJ/K}) = +186 \text{ kJ}$$

c. Does the reaction occur spontaneously at temperatures above 298 K, below 298 K, both, or neither? Justify your answer.

Since ΔH^o_{rxn} is positive, and ΔS^o_{rxn} is negative, ΔG^o_{rxn} will be positive at all temperatures, since $\Delta G^o_{rxn} = \Delta H^o_{rxn} - T\Delta S^o_{rxn} = (+) - (+)(+) = (+)$ regardless of temperature. So, the reaction is non-spontaneous at all temperatures.

Form A **Possibly Useful Information**

$\Delta G = \Delta H - T \Delta S$	°C = K – 273.15
$q_{rxn} = n\Delta H_{rxn}$	q = mc∆T
Don't eat the yellow snow!	q _{released} = -q _{absorbed}

Compound	Molar Mass (g/mol)	Compound	Molar Mass (g/mol)			
H ₂ O	18.0153	C ₆ H ₁₄	86.177			
H ₂ O ₂	34.0147	CO ₂	44.010			
HCI	36.4606	N_2H_4	32.0452			
H ₂	2.01588	NH ₄ NO ₃	80.0434			
N ₂	28.0135	N ₂ O	44.0129			
O ₂	31.9988	NO	30.0061			
Cl ₂	70.9054	NOCI	65.4588			

Material	Specific Heat Capacity (J/gK)
$H_2O(s)$	2.050
H ₂ O (I)	4.184
H ₂ O (g)	2.080
7n(s)	0.390

1																	18
1A																	8A
1 H	2											13	14	15	16	17	2 He
1.00794	2A											3A	4A	5A	6A	7A	4.00260
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
6.941	9.01218											10.811	12.011	14.0067	15.9994	18.9984	20.1797
11 N.	12	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18
Na 22.9898	Mg 24.3050	3B	4B	5B	6B	7B	_	-8B-	_	1B	2B	26.9815	28.0855	30.9738	32.066	35.4527	Ar 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.0983	Ca 40.078	Sc 44.9559	Ti 47.88	V 50.9415	Cr 51.9961	Mn 54.9381	Fe 55.847	Co 58.9332	Ni 58.693	Cu 63.546	Zn 65.39	Ga 69.723	Ge 72.61	As 74.9216	Se 78.96	Br 79.904	Kr 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.4678	Sr 87.62	Y 88.9059	Zr 91.224	Nb 92,9064	Mo 95.94	Tc (98)	Ru 101.07	Rh 102.906	Pd 106.42	Ag 107.868	Cd 112.411	In 114.818	Sn 118.710	Sb 121.757	Te 127.60	I 126.904	Xe 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132,905	Ba 137,327	*La 138,906	Hf 178,49	Ta 180,948	W 183.84	Re 186,207	Os 190,23	Ir 192.22	Pt 195,08	Au 196.967	Hg 200,59	Tl 204,383	Pb 207.2	Bi 208,980	Po (209)	At (210)	Rn
87	88	138.906	104	105	106	107	108	109	195.08	111	200.59	204.383	207.2	208.980	(209)	(210)	(222)
Fr	Ra	†Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	226.025	227.028	(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)]						
*Lanthanide series		58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
Lanthanide series		140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967		
		90	91	92	93	94	95	96	97	98	99	100	101	102	103		
[†] Actinide series		Th 232.038	Pa 231.036	U 238.029	Np 237.048	Pu (244)	Am (243)	Cm (247)	Bk (247)	Cf (251)	Es (252)	Fm (257)	Md (258)	No (259)	Lr (262)		
				252.058	251,036	230.029	237.048	(244)	(243)	(24/)	(24/)	(231)	(454)	(25/)	(238)	(259)	(202)

Copyright © 2007 Pearson Prentice Hall, Inc.