| Chem 130 | | |------------|-----| | Exam 1, Ch | 1-4 | | 100 Points | | | Name | | |--------------------|--| | September 23, 2011 | | Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions. ## Part 0: Warmup. 4 points each - 1. Thallium has two stable isotopes, ²⁰³Tl and ²⁰⁵Tl. Given that the atomic mass of thallium is 204.383 amu, which isotope must have the larger natural abundance? - a. ²⁰³TI - b. ²⁰⁵TI - c. Both have the same natural abundance. | Answer | B | |---------|---| | Allowel | | - d. Not enough information to make this determination. - 2. Which of the following aspects of Dalton's atomic theory remains unchanged in our current understanding: - a. Atoms are indivisible. - b. All atoms of a particular element are identical. - c. Compounds are the result of a combination of two or more Answer ____C___different kinds of atoms in fixed ratios. - d. None of the above. ## Part I: Complete all of problems 3-9 - 3. Define the following using a maximum of two sentences for each definition. (8 points) - a. accuracy: The proximity of a data point to the "true value" - b. precision: The reproducibility of a measurement or set of data. - 4. Complete the following table. (12 points) | Symbol | ³⁴ S ²⁻ | ⁴⁰ Ca ²⁺ | ⁵⁸ Ni | |----------------|-------------------------------|--------------------------------|------------------| | # of protons | 16 | 20 | 28 | | # of neutrons | 16 | 20 | 30 | | # of electrons | 18 | 18 | 28 | | Charge | -2 | +2 | 0 | | Name | sulfide ion | calcium-40 ion | nickel-58 | ## Form A 5. Name the following compounds or provide the correct formula for the given names. (18 pts) | a. diphosphorous tetrafluoride | | P_2F_4 | | | |--------------------------------|---|--------------------|--|--| | b. | Al ₂ (CO ₃) ₃ | aluminum carbonate | | | c. $$Cr(PO_4)_2$$ chromium (VI) phosphate d. iron (III) sulfate $$Fe_2(SO_4)_3$$ f. $$N_2O_5$$ dinitrogen pentoxide 6. How many ²⁰⁴Pb atoms are in a piece of lead weighing 215 mg? The percent natural abundance of lead is 1.4%. (8 points) 0.215 g-Pb x 1 mol Pb $$\frac{1}{207.2-g}$$ x $\frac{6.02x10^{23} \text{ atoms Pb}}{1 \text{ mol Pb}}$ x $\frac{1.4 \text{ atoms}}{100 \text{ atoms Pb}}$ = 8.8 x 10^{18 204}Pb atoms - 7. Write balanced reactions, specifying the state for all reactants and products. (8 points) - a. Aqueous copper (I) sulfate reacts with aqueous barium iodide to produce solid barium sulfate and aqueous copper (I) iodide. $$Cu_2SO_4$$ (aq) + Bal_2 (aq) $\rightarrow BaSO_4$ (s) + $2Cul$ (aq) b. Aqueous sodium carbonate reacts with gaseous nitrogen monoxide and oxygen gas to produce aqueous sodium nitrate and carbon monoxide gas. $$Na_2CO_3$$ (aq) + 2 NO (g) + O_2 (g) \rightarrow 2 NaNO₃ (aq) + CO (g) 8. A solution consisting of 8.50% acetone and 91.50% water by mass has a density of 0.9867 g/mL. What mass of acetone, in kg, is present in 7.50 L of the solution? (8 pts) 7500 mL x $$0.9867 \frac{\text{g soln}}{\text{mL}}$$ x $8.50 \frac{\text{g acetone}}{100 \frac{\text{g soln}}{\text{g soln}}}$ x $1 \frac{\text{kg}}{10^3 \text{g}}$ = $0.629 \frac{\text{kg acetone}}{10^3 \text{g}}$ 2 ## Part II. Answer three (3) of problems 9-12. Clearly mark the problem you do not want graded. 10 points each. 9. Silicon has three stable isotopes, ²⁸Si, ²⁹Si, and ³⁰Si with masses of 27.98 amu, 28.98 amu, and 29.77 amu, respectively. If the natural abundance of ²⁸Si is 92.23%, what are the percent abundances of the other two isotopes? The total abundance of 29 Si, and 30 Si must be: 100 - 92.23 = 7.77 % So: $f_{29} + f_{30} = 0.0777$ where f_x is the fractional abundance of the isotope with mass # x. And: $(0.9223 \times 27.98) + 28.98f_{29} + 29.77f_{30} = 28.0855$ (This is our definition of atomic mass) Now we need to find f_{29} and f_{30} : $$f_{30} = 0.0777 - f_{29}$$ $$28.98f_{29} + 29.77f_{30} = 28.0855 - (0.9223 \times 27.98) = 2.2795$$ $$28.98f_{29} + 29.77(0.0777 - f_{29}) = 2.2795$$ $$28.98f_{29} - 29.77f_{29} = 2.2795 - (29.77x0.0777) = -0.03363$$ $$-0.79f_{29} = -0.03363$$ $$f_{29} = 0.04257$$ So, $f_{30} = 0.0777 - 0.04257 = 0.03513$ So, the percent abundance for ²⁹Si is 4.26% and the percent abundance for ³⁰Si is 3.51% 10. Ammonia can be generated by heating together the solids Ca(OH)₂ and NH₄Cl. CaCl₂ and water are also formed. How many grams of NH₃ will form if 33.0 grams each of NH₄Cl and Ca(OH)₂ are heated? (molar masses (g/mol): NH₄Cl = 53.4912, NH₃ = 17.03056, Ca(OH)₂ = 74.093, CaCl₂ = 110.983, water = 18.0153) $2NH_4CI + Ca(OH)_2 \rightarrow CaCI_2 + 2H_2O + 2NH_3$ If NH_4CI is the limiting reactant, how many grams of ammonium could be produced? $$33.0 \ \frac{\text{g-NH}_4\text{Cl}}{53.4912} \ \frac{\text{g-NH}_4\text{Cl}}{\text{g-NH}_4\text{Cl}} \ \frac{\text{y-2 mol-NH}_3}{2 \ \text{mol-NH}_4\text{Cl}} \ \frac{\text{y-17.03056}}{1 \ \text{mol-NH}_3} = \ \textbf{10.51 g NH}_3$$ If Ca(OH)₂ is the limiting reactant, how many grams of ammonium could be produced? $$33.0 \text{ g Ca(OH)}_2 \text{ x } 1 \text{ mol Ca(OH)}_2 \text{ x } 2 \text{ mol NH}_3 \text{ x } 1 \text{ mol Ca(OH)}_2 \text{ x } 1 \text{ mol Ca(OH)}_2 \text{ x } 1 \text{ mol Ca(OH)}_2 \text{ x } 1 \text{ mol NH}_3 \text{ mol NH}_3 \text{ mol NH}_3$$ Therefore, ammonium chloride must be the limiting reagent, and a maximum of 10.5 grams of ammonia could be produced. 3 11. Iron ore is impure Fe_2O_3 . When Fe_2O_3 is heated with carbon, metallic iron and carbon monoxide gas are formed. From a sample of ore weighing 938 g, 532 g of pure iron is obtained. What is the percent Fe_2O_3 , by mass, in the original ore sample? (molar masses (g/mol): $Fe_2O_3 = 159.6922$, carbon monoxide = 28.010) Fe₂O₃ + 3 C $$\rightarrow$$ 2 Fe + 3 CO 532 g-Fe x 1 mol Fe x 1 mol Fe₂O₃ x 159.6922 g-Fe₂O₃ = **760.6** g Fe₂O₃ 55.847 g-Fe 2 mol Fe 1 mol Fe₂O₃ Therefore, 761 grams of Fe₂O₃ must have been present in the original sample. In terms of percent, this corresponds to: $$\frac{761 \text{ g Fe}_2\text{O}_3}{938 \text{ g ore}}$$ x 100% = **81.1% Fe}2O_3** 12. One of the reasons that methamphetamine is such a problem is that it is a relatively small molecule that is fairly easy to synthesize. A molecule of methamphetamine contains only carbon, hydrogen, and nitrogen and has a molar mass of 149.2 g/mol. If methamphetamine is 80.48% C and 9.39% N by mass, what is its molecular formula? So, the percent H must be: 100-80.48-9.39 = 10.13%H There are several ways to solve this problem. Here is one: | _ X | 80.48 g C | X _ | 1 mol C | =_ | 9.997 mol C | |-----|---|--|--|---|--| | | 100 g meth | | 12.011 g C | | 1 mol meth | | x | 9.39 g N
100 g meth | x | 1 mol N
14.0067 g N | =_ | 1.000 mol N
1 mol meth | | x | 10.13 g H
100 g meth | x | 1 mol H
1.00794 g H | =_ | 14.995 mol H
1 mol meth | | | x_ | 100 g meth x 9.39 g N 100 g meth x 10.13 g H | 100 g meth x 9.39 g N x 100 g meth x 10.13 g H x | 100 g meth 12.011 g C x 9.39 g N x 1 mol N 100 g meth 14.0067 g N x 10.13 g H x 1 mol H | 100 g meth 12.011 g C x 9.39 g N x 1 mol N = 14.0067 g N x 10.13 g H x 1 mol H = | So, the likely formula is $C_{9.997}H_{14.995}N_{1.000}$ or, $C_{10}H_{15}N$. Is this really the molecular formula? Check the molar mass: 10(12.011) + 15(1.00794) + 14.0067 = 149.23 Therefore, C₁₀H₁₅N must be the molecular formula! Form A **Possibly Useful Information** | | Possibly Useful Information | | | | | | |---|-----------------------------|---|--|--|--|--| | N _a = | = 6.02214 | x 10 ²³ mol ⁻¹ | D = m/v | | | | | Act | *Lar | 55
Cs
132.905
87
Fr
(223) | 1 1 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A | | | | | Actinide series | *Lanthanide series | 87.62
56
Ba
137.327
88
Ra
226.025 | 2
2A
2A
Be
9.01218
12
Mg
24.3050
Ca
40.078 | | | | | eries | e series | 88.9059 *La 138.906 89 †Ac 227.028 | 3
3B
3B
21
Sc
44,9559 | | | | | | | 91.224
72
Hf
178.49
104
Rf
(261) | 4
4B
47.88 | | | | | 1 h
232.038 | 58
Ce
140.115 | 73
Ta
180.948
105
Db
(262) | 5B
5B
5B
5B
5B | | | | | 6 | 59
Pr
140.908
91 | 95.94
74
W
183.84
106
Sg
(266) | 6
6B
6B
6B
6B | | | | | 238.029 237.048 (244) (243) (247) (27) | 60
Nd
144.24
92 | 75
Re
186.207
107
Bh
(264) | 7
7B
Mn
54.9381
1C | | | | | Np
237.048
It © 200 | 61
Pm
(145)
93 | 76
Os
190.23
108
Hs
(277) | 8 8 55.847 Ru | | | | | (244)
)7 Pear | 62
Sm
150.36 | 102.906
77
Ir
192.22
109
Mt
(268) | 9
8B

Co
58.9332
45
Rh | | | | | (243) | 63
Eu
151.965
95 | 78
Pt
195.08
110
Ds
(271) | 10
Ni
58.693 | | | | | (247) | 64
Gd
157.25 | 79
Au
196.967
111
Rg
(272) | 111
118
118
118
118 | | | | | (247) | 65
Tb
158.925 | 80
Hg
200.59 | 12
2B
2B
65.39 | | | | | | 66
Dy
162.50 | 114.818
81
T1
204.383 | 13 3A 3B 10.811 13 13 14 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | | | | | (252) | 67
Ho
164.930
99 | 82
Pb
207.2 | 14
4A
4A
6
C
12.011
14
Si
28.0855
32
Ge
72.61 | | | | | (257) | 68
Er
167.26 | 83
Bi
208.980 | 15
5A
5A
N
14.0067
15
P
30.9738
As
74.9216
51
51 | | | | | (258) | 69
Tm
168.934
101 | 84
Po
(209) | 16
6A
6A
0
15.9994
16
S
32.066
32.066
34
Se
78.96 | | | | | (259) | 70
Yb
173.04 | 126.904
85
At
(210) | 17
7A
7A
F
18.9984
17
C1
35.4527
35
Br
79.904 | | | | | (262) | 71
Lu
174.967 | 86
Rn
(222) | 18
8A
10
10
Ne
20.1797
18
Ar
39.948
36
Kr
83.80 | | | |