Ch	em ′	121			
Ex: 10(am 3 0 Po	3 ints			April 3, 2009
Ple pro an:	ease oblen swer	follow the instructions for each s ns. Provide answers with the corr s to discussion questions.	ectio rect u	n of the exam. Show your work ounits and significant figures. Be c	on all mathematical oncise in your
Co 1.	mpl Of t	ete all of problems 1-4. he following, the amphiprotic ion	is: (4	4 points)	
	a. b.	HCO ₃ ⁻ NH ₄ ⁺	c. d.	CO ₃ ²⁻ CIO ₄	Answer
2.	The NH⊿	e effect of adding 0.001 mol KOH $_{4}^{+}$ is to: (4 points)	to 1	.00 L of a solution that is 0.10M N	NH_3 and 0.10M
	a. b.	Raise the pH by several units Raise the pH very slightly	c. d.	Lower the pH very slightly Lower the pH by several units	Answer
3.	The mus	e reaction $2CO_2$ (g) $ ightarrow$ $2CO$ (g) + C st be (4 points)	D₂ (g) has $K_c = 2.0 \times 10^{-6}$. Based on t	his, the reaction
	a. b.	Product-favored and fast Reactant-favored and fast	c. d.	Reactant-favored and slow None of the above.	Answer
4	Δh	uffer solution is prepared by diss	olvin	a 0.200 moles of picolinic acid (a	monoprotic acid

- 4. A buffer solution is prepared by dissolving 0.200 moles of picolinic acid (a monoprotic acid with $K_a = 4.10 \times 10^{-6}$) and 0.200 moles of sodium picolinate (its conjugate base) in 1.00 L of solution. (15 points).
 - a. What is the pH of this buffer?
 - b. What will be the new pH after 5 mL of 2.087 M NaOH is added to 100.0 mL of this buffer solution?

Answer three (3) of problems 5-8. Clearly mark the problem you do not want graded. 15 points each.

5. A solution contains 25.00 mL of 0.0500M NaOH, 15.00 mL of 0.100M HCl, 10.00 mL of 0.100M KOH, 5.00 mL of 0.200M HNO₃, and 10.0 mL of 0.100M NaCl. What is the pH of the solution?

6. Explain whether the following statement is true or false: "The exothermic reaction below will be spontaneous at all temperatures."

 $2 \text{ H}_2(g) + \text{O}_2(g) \rightarrow 2 \text{ H}_2\text{O}(g)$

7. Will the precipitation of MgF₂ occur if a 22.5 mg sample of MgCl₂•6H₂O (molar mass = 203.29 g/mol) is added to 325 mL of 0.0035M KF? K_{sp} for MgF₂ = 3.7 x 10⁻⁸

- 8. The curve below corresponds to one of the three titrations listed. Which titration is represented by the titration curve? Explain how you chose the correct answer and ruled out the other two.
 - a. The titration of 20 mL of 0.100 M ammonia $(pK_b = 4.75)$ with 0.100 M HCl.
 - b. The titration of 20 mL of 0.100 M propionic acid ($pK_a = 4.89$) with 0.100 M NaOH
 - c. The titration of 20 mL of 0.100 M oxalic acid $(pK_{a1} = 1.27, pK_{a2} = 4.28)$ with 0.100 M NaOH.

In the space below, answer either problem 9 or problem 10. 15 points.

- 9. An aqueous solution that is 2.00M in AgNO₃ is slowly added from a buret to an aqueous solution of 0.0100M Cl⁻ and 0.250M l⁻. Which ion, l⁻ or Cl⁻ will precipitate first? Justify your answer with a calculation. K_{sp} for AgCl = 1.8 x 10⁻¹⁰, K_{sp} for AgI = 8.5 x 10⁻¹⁷.
- 10. Consider a solution is prepared by dissolving 0.10 mol of malonic acid and 0.20 mol of propionic acid in 1.00 L of solution. Malonic acid is a weak diprotic acid with $K_{a1} = 1.5 \times 10^{-3}$ and $K_{a2} = 2.0 \times 10^{-6}$, while propionic acid is a weak monoprotic acid with $K_a = 1.3 \times 10^{-5}$. Write enough valid equations to solve for the pH of this solution. You do not need to arrive at a numerical answer; you just need enough equations to solve for all of the unknowns.

In the space below, answer either problem 11 or problem 12. 15 points.

11. I've given you the task of preparing a pH 4.75 buffer. You've sought the help of a few of your classmates and have narrowed your choices down to the following list. Each of these combinations should produce a buffer with pH=4.75. Which student's suggestion would provide the best choice to make the highest capacity buffer? Justify your reasoning

Student	Buffer Composition	K _a of weak acid			
Annie Yun	0.200M salicylic acid and 0.0032 M sodium salicylate	1.1 x 10 ⁻³			
Ty Trate	0.010 M acetic acid and 0.010 M sodium acetate	1.8 x 10 ⁻⁵			
Chris Talls	0.200 M acetic acid and 0.200 M sodium acetate	1.8 x 10 ⁻⁵			

12. Your lab has synthesized a new weak, diprotic acid, that you have named *acidic* acid (creative!). The pK_{a1} for this acid is 4.26, while pK_{a2} is 11.08. What is the pH of a 0.100 M solution of acidic acid?

Possibly Useful Information

$$\begin{array}{ll} \mathsf{R} = 8.31441 \; \mathsf{J} \; \mathsf{mol}^{-1} \; \mathsf{K}^{-1} & {}^{\mathrm{o}}\mathsf{C} = \mathsf{K} - 273.15 \\ \Delta \mathsf{G} = \Delta \mathsf{H} - \mathsf{T} \Delta \mathsf{S} & \Delta \mathsf{G} = \Delta \mathsf{G}^{\mathrm{o}} - \mathsf{R}\mathsf{T}\mathsf{In}\mathsf{Q} \\ \mathsf{p}\mathsf{H} + \mathsf{p}\mathsf{O}\mathsf{H} = 14 & \mathsf{K}_{\mathsf{a}}\mathsf{K}_{\mathsf{b}} = \mathsf{K}_{\mathsf{w}} \\ \mathsf{x} = \frac{-\mathsf{b} \pm \sqrt{\mathsf{b}^2 - 4\mathsf{ac}}}{2\mathsf{a}} & \mathsf{p}\mathsf{H} = \mathsf{p}\mathsf{K}_{\mathsf{a}} + \mathsf{log}\!\!\left(\!\frac{[\mathsf{conjugate}\;\mathsf{base}]}{[\mathsf{weak}\;\mathsf{acid}]}\right) \end{array}$$

1																	18
1A																	8A
1 H	2											13	14	15	16	17	2 He
1.00794	2A											3A	4A	5A	6A	7A	4.00260
3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C	7 N 14.0067	8 O 15,9994	9 F 18,9984	10 Ne 20.1797
11 Na 22.9898	12 Mg 24.3050	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al 26.9815	14 Si 28.0855	15 P 30.9738	16 S 32.066	17 Cl 35,4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9381	26 Fe 55.847	27 Co 58.9332	28 Ni 58.693	29 Cu 63,546	30 Zn 65,39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79,904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	47 Ag 107.868	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126.904	54 Xe 131.29
55 Cs 132,905	56 Ba 137,327	57 *La 138,906	72 Hf 178,49	73 Ta 180.948	74 W 183.84	75 Re 186,207	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196,967	80 Hg 200,59	81 Tl 204,383	82 Pb 207.2	83 Bi 208.980	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr	88 Ra	89 †Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg							
(223)	226.025	227.028	(261)	(262)	(266)	(264)	(277)	(268)	(2/1)	(2/2)							

*Lanthanide series	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
[†] Actinide series	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Copyright © 2007 Pearson Prentice Hall, Inc.