| Chem<br>Exam<br>100 Pe | 3, Ch 7, 19                                                                                                                                                                                                                                                                          | Name<br>November 7, 2008                  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| proble<br>answe        | e follow the instructions for each section of the ms. Provide answers with the correct units a ers to discussion questions. I have intentionary m. I do not expect each problem to take up                                                                                           | ally left a great deal of space for each  |
| 1. Th                  | <b>: Warmup. 4 points each</b><br>e heat of solution of NaOH(s) in water is -41<br>ater, the solution temperature                                                                                                                                                                    | .6 kJ/mol NaOH. When NaOH is dissolved in |
| b<br>c                 | <ul> <li>increases.</li> <li>decreases.</li> <li>remains constant.</li> <li>either increases or decreases depending NaOH dissolved.</li> </ul>                                                                                                                                       | Answer<br>on the amount of                |
|                        | plausible final temperature when 75.0 mL of ater at 20.0°C is                                                                                                                                                                                                                        | water at 80.0°C is added to 100.0 mL of   |
| b<br>C                 | . 28°C.<br>. 40°C.<br>. 46°C.<br>. 50°C.                                                                                                                                                                                                                                             | Answer                                    |
| 3. Fo                  | r a process to occur spontaneously,                                                                                                                                                                                                                                                  |                                           |
| b<br>c                 | <ul> <li>the entropy of the system must increase.</li> <li>both the entropy of the system and surrou increase.</li> <li>the net change of the entropy of the system must be a positive quantity.</li> <li>the entropy of the universe must remain compared to the system.</li> </ul> | Answer<br>m and surroundings              |
| 4. Re                  | eactions with a positive $\Delta H^{\circ}$ and a positive $\Delta S^{\circ}$                                                                                                                                                                                                        | S° are                                    |
| b<br>C                 | <ul> <li>spontaneous at all temperatures.</li> <li>nonspontanteous at all temperatures.</li> <li>spontaneous at low temperatures but non-<br/>high temperatures.</li> <li>nonspontaneous at low temperatures but s<br/>temperatures.</li> </ul>                                      |                                           |
| 5. WI                  | nich of the processes below DOES NOT res                                                                                                                                                                                                                                             | ult in an increase in entropy?            |
| b<br>c                 | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                 | ice.) Answer                              |

## Part I: Complete all of problems 6-9.

- 6. Concisely discuss the validity of each of the following statements. Clearly justify your reasoning. A few sentences should be sufficient. (12 points)
  - a. Reactions with a positive  $\Delta H^{\circ}$  and a positive  $\Delta S^{\circ}$  can never be product-favored.

b. Free energy changes provide a good indication of which reactions are favorable and fast, as well as those that are unfavorable and slow.

7. An ice cube weighing 5.63 g originally at  $0.0^{\circ}$ C was dropped into an insulated cup. After a short period of time, the ice had all melted and the temperature of the remaining liquid water had reached 25.2°C. How much heat energy, in kJ, did the water lose to the surroundings as it melted and warmed? (For water,  $\Delta H^{\circ}_{tusion} = 333 \text{ J/g}$ ,  $\Delta H^{\circ}_{vaporization} = 2256 \text{ J/g}$ ) (12 points)

- 8. For the following processes, give the algebraic sign for  $\Delta H^{\circ}$ ,  $\Delta S^{\circ}$ , and  $\Delta G^{\circ}$ . No calculations are necessary, use your common sense and briefly justify your decisions. A few sentences should be sufficient. (12 points)
  - a. The splitting of liquid water to give gaseous oxygen and gaseous hydrogen, a process that requires a considerable amount of energy.

b. The explosion of dynamite, a mixture of solid nitroglycerine and solid diatomaceous earth. The explosive decomposition gives gaseous products such as water, CO<sub>2</sub> and others and much heat is evolved.

9. Answer the following questions regarding the decomposition of sulfur trioxide to sulfur dioxide and oxygen. (16 points)

|                                                            | Species             | ∆H <sub>f</sub> ° (kJ/mol) | S° (J/mol K) |
|------------------------------------------------------------|---------------------|----------------------------|--------------|
|                                                            | O (g)               | 249.170                    | 161.055      |
| $2 \text{ SO}_3(g) \rightarrow 2 \text{ SO}_2(g) + O_2(g)$ | O <sub>2</sub> (g)  | 0                          | 205.138      |
|                                                            | S (s)               | 0                          | 31.80        |
|                                                            | S (g)               | 278.805                    | 167.821      |
|                                                            | SO <sub>2</sub> (g) | -296.830                   | 248.22       |
|                                                            | SO <sub>3</sub> (g) | -395.72                    | 256.76       |

a. Calculate the  $\Delta G^{\circ}$  for this reaction at 298K. (10 points)

b. Calculate the minimum temperature required for the reaction to be product-favored. (6 points).

## Part II. Answer two (2) of problems 10-13. Clearly mark the problems you do not want graded. 14 points each.

10. Solid ammonium nitrate can decompose to dintrogen oxide gas and liquid water. What is the  $\Delta G^{\circ}$  at 298K? At what temperature, if any, does spontaneity of the reaction change? Is the reaction more or less spontaneous at high temperatures?

| Species                       | ∆G° <sub>f</sub> (kJ/mol) | ∆H° <sub>f</sub> (kJ/mol) | S° <sub>f</sub> (J/mol) |
|-------------------------------|---------------------------|---------------------------|-------------------------|
| $NH_4NO_3(s)$                 | -183.9                    | -365.6                    | 151.1                   |
| N <sub>2</sub> O (g)          | +104.2                    | +82.05                    | 219.9                   |
| H <sub>2</sub> O ( <i>l</i> ) | -237.1                    | -285.8                    | 69.91                   |

For problems 11-13, consider the Bombardier Beetle, who defends itself by spraying nearly boiling water on its predators. It has two glands on the tip of its abdomen, with each gland containing two compartments. The inner compartment holds an aqueous solution of hydroquinone and hydrogen peroxide. The outer compartment holds a mixture of enzymes that catalyze the following reaction:



 $\begin{array}{cccc} C_6H_4(OH)_2\ (aq) &+& H_2O_2\ (aq) &\to& C_6H_4O_2\ (aq) &+& 2\ H_2O\ (\ell) \\ hydroquinone & hydrogen & benzoquinone & water \\ peroxide & \end{array}$ 

When threatened, the beetle squeezes some fluid from the inner compartment into the outer compartment, and sprays the mixture (which is near its boiling point) onto the predator.

11. Calculate the  $\Delta H^{\circ}$  for the Bombardier Beetle reaction using the following data:

| Reaction                                                 | ΔH°       |
|----------------------------------------------------------|-----------|
| $C_6H_4(OH)_2 (aq) \rightarrow C_6H_4O_2 (aq) + H_2 (g)$ | +177.4 kJ |
| $H_2(g) + O_2(g) \rightarrow H_2O_2(aq)$                 | -191.2 kJ |
| $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$                  | -483.6 kJ |
| $H_2O(g) \rightarrow H_2O(\ell)$                         | -43.8 kJ  |

12. Using the table of  $\Delta H^{o}_{f}$  below and your result from number 11, calculate the  $\Delta H^{o}_{f}$ , of hydroquinone,  $C_{6}H_{4}(OH)_{2.}$ , in kJ/mol. (Note: if you did not get an answer to number 11, you may use -200 kJ as a reasonable estimate for  $\Delta H^{o}_{rxn}$ ).

| C <sub>6</sub> H <sub>4</sub> (OH) <sub>2</sub> ( <i>aq</i> ) | + | H <sub>2</sub> O <sub>2</sub> ( <i>aq</i> ) | $\rightarrow$ | C <sub>6</sub> H <sub>4</sub> O <sub>2</sub> ( <i>aq</i> ) | + | 2 H <sub>2</sub> O (ℓ) |
|---------------------------------------------------------------|---|---------------------------------------------|---------------|------------------------------------------------------------|---|------------------------|
| hydroquinone                                                  |   | hydrogen<br>peroxide                        |               | benzoquinone                                               |   | water                  |

| Species                                           | ∆H <sup>°</sup> <sub>f</sub> (kJ/mol) | Species              | ∆H <sup>°</sup> <sub>f</sub> (kJ/mol) |
|---------------------------------------------------|---------------------------------------|----------------------|---------------------------------------|
| H <sub>2</sub> O <sub>2</sub> (aq)                | -191.2                                | $H_2O(g)$            | -241.8                                |
| H <sub>2</sub> O <sub>2</sub> ( <i>l</i> )        | -187.8                                | H <sub>2</sub> O (ℓ) | -285.8                                |
| C <sub>6</sub> H <sub>4</sub> O <sub>2</sub> (aq) | -50.4                                 |                      |                                       |

13. Assume a beetle emits 0.90 mL of 3.0 M hydroquinone and 1.10 mL of 3.0 M peroxide. If the initial temperature of this solution is  $25.0^{\circ}$ C, what will the solution temperature be after the reaction? Assume the specific heat of the solution is 4.184 J/gK and that the density of solution is 1.00 g/mL. (Note: if you did not get an answer to number 11, you may use -200 kJ as a reasonable estimate for  $\Delta H^{\circ}_{rxn}$ ).

## **Possibly Useful Information**

| $\Delta G = \Delta H - T \Delta S$ | °C = K – 273.15                |
|------------------------------------|--------------------------------|
| $q_{rxn} = n \Delta H_{rxn}$       | q = mc∆T                       |
| henway = ~5-6 lbs                  | $q_{released} = -q_{absorbed}$ |

| Compound                                     | Molar Mass<br>(g/mol) | Compound                        | Molar Mass<br>(g/mol) |
|----------------------------------------------|-----------------------|---------------------------------|-----------------------|
| H <sub>2</sub> O                             | 18.0153               | SO <sub>2</sub>                 | 64.065                |
| $H_2O_2$                                     | 34.0147               | SO <sub>3</sub>                 | 80.064                |
| C <sub>6</sub> H <sub>4</sub> O <sub>2</sub> | 108.097               | NH <sub>4</sub> NO <sub>3</sub> | 80.0434               |
| $C_6H_4(OH)_2$                               | 110.112               | N <sub>2</sub> O                | 44.0129               |
| H <sub>2</sub>                               | 2.01588               | CO <sub>2</sub>                 | 44.010                |
| O <sub>2</sub>                               | 31.9988               |                                 |                       |

| Material  | Specific Heat Capacity<br>(J/gK) |
|-----------|----------------------------------|
| $H_2O(s)$ | 2.050                            |
| $H_2O(I)$ | 4.184                            |
| $H_2O(g)$ | 2.080                            |

|               |               |                            |              |               |             | $\Pi_2 U$     | (g)          |              |              | .000          |           |          |          |               |             |             |             |
|---------------|---------------|----------------------------|--------------|---------------|-------------|---------------|--------------|--------------|--------------|---------------|-----------|----------|----------|---------------|-------------|-------------|-------------|
| 1             |               |                            |              |               |             |               |              |              |              |               |           |          |          |               |             |             | 18          |
| 1A            |               |                            |              |               |             |               |              |              |              |               |           |          |          |               |             |             | 8A          |
| 1<br>H        | 2             |                            |              |               |             |               |              |              |              |               |           | 13       | 14       | 15            | 16          | 17          | 2<br>He     |
| 1.00794       | 2A            |                            |              |               |             |               |              |              |              |               |           | 3A       | 4A       | 5A            | 6A          | 7A          | 4.00260     |
| 3<br>Li       | 4<br>Be       |                            |              |               |             |               |              |              |              |               |           | 5<br>B   | 6<br>C   | 7<br>N        | 8<br>0      | 9<br>F      | 10<br>Ne    |
| 6.941         | 9.01218       |                            |              |               |             |               |              |              |              |               |           | 10.811   | 12.011   | 14.0067       | 15.9994     | 18.9984     | 20.1797     |
| 11<br>Na      | 12<br>Mg      | 3                          | 4            | 5             | 6           | 7             | 8            | 9            | 10           | 11            | 12        | 13<br>Al | 14<br>Si | 15<br>P       | 16<br>S     | 17<br>Cl    | 18<br>Ar    |
| 22.9898       | 24.3050       | 3B                         | 4B           | 5B            | 6B          | 7B            | /            | -8B-         | _            | 1B            | 2B        | 26.9815  | 28.0855  | 30.9738       | 32.066      | 35.4527     | 39.948      |
| 19<br>K       | 20<br>Ca      | 21<br>Sc                   | 22<br>Ti     | 23<br>V       | 24<br>Cr    | 25<br>Mn      | 26<br>Fe     | 27<br>Co     | 28<br>Ni     | 29<br>Cu      | 30<br>Zn  | 31<br>Ga | 32<br>Ge | 33<br>As      | 34<br>Se    | 35<br>Br    | 36<br>Kr    |
| 39.0983       | 40.078        | 44.9559                    | 47.88        | 50.9415       | 51.9961     | 54.9381       | 55.847       | 58.9332      | 58.693       | 63.546        | 65.39     | 69.723   | 72.61    | 74.9216       | 78.96       | 79.904      | 83.80       |
| 37<br>Rb      | 38<br>Sr      | 39<br>Y                    | 40<br>Zr     | 41<br>Nb      | 42<br>Mo    | 43<br>Tc      | 44<br>Ru     | 45<br>Rh     | 46<br>Pd     | 47            | 48<br>Cd  | 49<br>In | 50<br>Sn | 51<br>Sb      | 52<br>Te    | 53<br>I     | 54<br>Xe    |
| 85.4678       | 87.62         | 88.9059                    | 91.224       | 92.9064       | 95.94       | (98)          | 101.07       | 102.906      | 106.42       | Ag<br>107.868 | 112.411   | 114.818  | 118.710  | 121.757       | 127.60      | 126.904     | 131.29      |
| 55            | 56<br>B a     | 57<br>*La                  | 72<br>Hf     | 73            | 74<br>W     | 75<br>P.o     | 76           | 77<br>Ir     | 78<br>Pt     | 79            | 80        | 81<br>Tl | 82<br>Pb | 83<br>Bi      | 84<br>Bo    | 85          | 86<br>B.a   |
| Cs<br>132.905 | Ba<br>137.327 | 138.906                    | ПІ<br>178.49 | Ta<br>180.948 | 183.84      | Re<br>186.207 | Os<br>190.23 | 11<br>192.22 | Pt<br>195.08 | Au<br>196.967 | Hg 200.59 | 204.383  | 207.2    | D1<br>208.980 | Po<br>(209) | At<br>(210) | Rn<br>(222) |
| 87            | 88<br>B.c     | 89<br>†A                   | 104          | 105           | 106         | 107<br>D1     | 108          | 109          | 110          | 111           |           |          |          |               |             |             |             |
| Fr<br>(223)   | Ra<br>226.025 | <sup>†</sup> Ac<br>227.028 | Rf<br>(261)  | Db<br>(262)   | Sg<br>(266) | Bh<br>(264)   | Hs<br>(277)  | Mt<br>(268)  | Ds<br>(271)  | Rg<br>(272)   |           |          |          |               |             |             |             |

| *Lanthanide series           | 58      | 59      | 60      | 61      | 62     | 63      | 64     | 65      | 66     | 67      | 68     | 69      | 70     | 71      |
|------------------------------|---------|---------|---------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|
|                              | Ce      | Pr      | Nd      | Pm      | Sm     | Eu      | Gd     | Tb      | Dy     | Ho      | Er     | Tm      | Yb     | Lu      |
|                              | 140.115 | 140.908 | 144.24  | (145)   | 150.36 | 151.965 | 157.25 | 158.925 | 162.50 | 164.930 | 167.26 | 168.934 | 173.04 | 174.967 |
| <sup>†</sup> Actinide series | 90      | 91      | 92      | 93      | 94     | 95      | 96     | 97      | 98     | 99      | 100    | 101     | 102    | 103     |
|                              | Th      | Pa      | U       | Np      | Pu     | Am      | Cm     | Bk      | Cf     | Es      | Fm     | Md      | No     | Lr      |
|                              | 232.038 | 231.036 | 238.029 | 237.048 | (244)  | (243)   | (247)  | (247)   | (251)  | (252)   | (257)  | (258)   | (259)  | (262)   |

Copyright © 2007 Pearson Prentice Hall, Inc.