Cł	nem 1	121	Name										
Ex 10	am 3 0 Poi) ints			April 3, 2009								
Ple pro an	ease oblem swers	follow the instructions for each s ns. Provide answers with the corr s to discussion questions.	ectio rect u	n of the exam. Show your work or units and significant figures. Be co	n all mathematical oncise in your								
Cc 1.	omple Of ti	ete all of problems 1-4. he following, the amphiprotic ion	is: (4	1 points)									
	a. b.	HCO ₃ ⁻ NH ₄ ⁺	c. d.	CO ₃ ²⁻ CIO ₄	Answer a								
2.	The NH₄	effect of adding 0.001 mol KOH ⁺ is to: (4 points)	to 1.	00 L of a solution that is 0.10M N	H_3 and 0.10M								
	a. b.	Raise the pH by several units Raise the pH very slightly	c. d.	Lower the pH very slightly Lower the pH by several units	Answer b								
3.	The mus	reaction 2CO ₂ (g) $ eal$ 2CO (g) + 0 st be (4 points)	⊃₂ (g)) has $K_c = 2.0 \times 10^{-6}$. Based on th	is, the reaction								
	a. b.	Product-favored and fast Reactant-favored and fast	c. d.	Reactant-favored and slow None of the above.	Answerd								
4.	A bu with solu	uffer solution is prepared by diss $K_a = 4.10 \times 10^{-6}$) and 0.200 molention. (15 points).	olving es of	g 0.200 moles of picolinic acid (a sodium picolinate (its conjugate b	monoprotic acid base) in 1.00 L of								

- a. What is the pH of this buffer?
- b. What will be the new pH after 5 mL of 2.087 M NaOH is added to 100.0 mL of this buffer solution?
- a. To calculate the pH of a buffer solution, we can use the Hendersen-Hasslebach equation (or set up an ICE table).

 $\dot{pH} = pK_a + \log \underline{[A^{-}]}_{[HA]} = 5.39 + \log \underline{0.200 M}_{0.200 M} = 5.39$

b. mol HA = 100 mL x 0.200M = 20.0 mmol = mol Amol OH⁻ = 5 mL x 2.087M = 10.44 mmol

	OH ⁻	+	HT	\rightarrow	T-	+	H_2O
Start	10.44 mmol		20.00mmol		20.00		0
End	0		9.56 mmol		30.44 mmol		10.44 mmol

We now have a new solution of A⁻ and HA and can determine its pH. We could set up an ICE table or use Henderson Hasslebach equation, either way we get the same result:

$$pH = pK_a + log \underline{[A^-]}_{[HA]} = 5.39 + log \underline{30.44 \text{ mmol}}_{9.56 \text{ mmol}} = 5.89$$

Answer three (3) of problems 5-8. Clearly mark the problem you do not want graded. 15 points each.

A solution contains 25.00 mL of 0.0500M NaOH, 15.00 mL of 0.100M HCI, 10.00 mL of 0.100M KOH, 5.00 mL of 0.200M HNO₃, and 10.0 mL of 0.100M NaCI. What is the pH of the solution?
 With the exception of NaCI, which will not contribute to pH, all of these are strong acids and bases. Therefore, the pH will be determined by the amount of H⁺ remaining after neutralization:

mmol OH⁻ present: (25.00 mL x 0.0500M) + (10.00 mL x 0.100M) = 2.25 mmol OH⁻ present mmol H⁺ present: (15.00 mL x 0.100M) + (5.00 mL x 0.200M) = 2.50 mmol H⁺ present

So, 2.50 – 2.25 = 0.25 mmol of H⁺ will be present in the 65.00 mL of solution, giving an H⁺ concentration of (0.25 mmol)/(65 mL) = 3.85×10^{-3} M or a **pH = 2.41**

6. Explain whether the following statement is true or false: "The exothermic reaction below will be spontaneous at all temperatures."

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$$

For a reaction to be spontaneous, the free energy change (ΔG) for the reaction must be negative. The ΔG , however, depends on enthalpy and entropy of the reaction by the equation below:

So, for ΔG to be negative at all temperatures ΔH for the reaction must be negative and ΔS for the reaction must be positive. From the statement, we are told that the reaction is exothermic, corresponding to a negative ΔH . Looking at the reaction, we see that three moles of gaseous reactants are being converted to two moles of gaseous products. This corresponds to s decrease in entropy, or a negative ΔS . Since this does not fit the criteria for spontaneity at all temperatures, the statement is false.

7. Will the precipitation of MgF₂ occur if a 22.5 mg sample of MgCl₂•6H₂O (molar mass = 203.29 g/mol) is added to 325 mL of 0.0035M KF? K_{sp} for MgF₂ = 3.7 x 10⁻⁸

Precipitation will occur if $Q>K_{sp}$ for the equilibrium. The equilibrium in question is that for the dissolution of MgF₂:

$$MgF_2(s) \rightleftharpoons Mg^{2+} + 2F^ K_{sp} = [Mg^{2+}][F^-]^2$$

So, we need to determine the $[Mg^{2+}]$ and $[F^{-}]$ in the solution to see if K_{sp} is exceeded.

22.5 mg MgCl₂•6H₂O x <u>1 mol MgCl₂</u> x <u>1 mol Mg²⁺</u> = <u>1.107 x 10⁻⁴ mol Mg²⁺</u> = 3.40₆ x 10⁻⁴ M 203.29g MgCl₂ <u>1 mol MgCl₂</u> 0.325 L

Then Q = $[Mg^{2+}][F^{-}]^2 = (3.40_6 \times 10^{-4} \text{ M})(0.0035\text{ M})^2 = 4.17 \times 10^{-9}$

Since 4.17 x 10^{-9} is less than 3.7 x 10^{-8} , no precipitate will form (Q<K_{sp}).

- 8. The curve below corresponds to one of the three titrations listed. Which titration is represented by the titration curve? Explain how you chose the correct answer and ruled out the other two.
 - a. The titration of 20 mL of 0.100 M ammonia $(pK_b = 4.75)$ with 0.100 M HCl.
 - b. The titration of 20 mL of 0.100 M propionic acid $(pK_a = 4.89)$ with 0.100 M NaOH
 - c. The titration of 20 mL of 0.100 M oxalic acid $(pK_{a1} = 1.27, pK_{a2} = 4.28)$ with 0.100 M NaOH.

From the titration curve, the titration starts out acidic, has an equivalence point pH of \sim pH 9 at 20 mL and reaches a maximum pH of \sim 12.5 or so. Which titration conditions does this match. Let's consider each possibility.

- Since choice (a) is a titration of a weak base with a strong acid, we'd expect the pH to start out basic and get more acidic, which it does not, ruling our (a).
- Choice (b) is the titration of a weak acid with a strong base, which should start our acidic and have a slightly basic pH at the equivalence point, matching the given data. Plus, we'd expect the pH at 10 mL to be equal to the pK_a (4.89), which appears to be the case.
- Choice (c) should present two equivalence points, one at 20 mL and a second at 40 mL, since these are not evident in the data, we can rule out (c).

Therefore, it appears that the data corresponds to the titration described in (b).

In the space below, answer either problem 9 or problem 10. 15 points.

9. An aqueous solution that is 2.00M in AgNO₃ is slowly added from a buret to an aqueous solution of 0.0100M Cl⁻ and 0.250M l⁻. Which ion, l⁻ or Cl⁻ will precipitate first? Justify your answer with a calculation. K_{sp} for AgCl = 1.8 x 10⁻¹⁰, K_{sp} for Agl = 8.5 x 10⁻¹⁷.

To deal with this problem, calculate the [Ag⁺] required to cause precipitate formation for each salt. First, let's do AgCI:

	AgCl(s)	\rightleftharpoons	Ag⁺	+	Cl	At equilibrium:	K_{sp}	=	(x)(0.0100+x)
1			0		0.0100 M	Assume x << 0.0100		=	0.0100x
С			+x		+x		Х	=	K _{sp} /0.0100
Е			Х		0.0100 +x		х	=	1.8 x 10 ⁻⁸ M

Repeat the calculation for Agl:

	Agl(s)	\rightleftharpoons	Ag⁺	+	T.	At equilibrium:	K_{sp}	=	(x)(0.25+x)
1			0		0.25 M	Assume x << 0.25		=	0.25x
С			+X		+X		Х	=	K _{sp} /0.25
Е			Х		0.25 +x		Х	=	3.4 x 10 ⁻¹⁶ M

In both cases, our assumptions were reasonable. Since we defined x as $[Ag^+]$, our calculations tell us that AgI will precipitate once $[Ag^+]$ exceeds 3.4 x 10⁻¹⁶M, but AgCI won't precipitate until $[Ag^+]$ exceed 1.8 x 10⁻⁸M. Therefore iodide ion, as AgI, will precipitate first.

10. Consider a solution prepared by dissolving 0.10 mol of malonic acid and 0.20 mol of propionic acid in 1.00 L of solution. Malonic acid is a weak diprotic acid with $K_{a1} = 1.5 \times 10^{-3}$ and $K_{a2} = 2.0 \times 10^{-6}$, while propionic acid is a weak monoprotic acid with $K_a = 1.3 \times 10^{-5}$. Write enough valid equations to solve for the pH of this solution. You do not need to arrive at a numerical answer; you just need enough equations to solve for all of the unknowns.

Begin by writing all equilibria, with their associated equilibrium constant expressions. We'll abbreviate malonic acid as H_2A and propionic acid as HP.

H₂A	$K_{a1} = [H]$	4⁻][H⁺]
$HA^{-} \rightleftharpoons H^{+} + A^{2-}$	[] K _{a2} = [A	H₂A] ²⁻][H⁺]
HP <i>⇄</i> H ⁺ + P ⁻	K _a = [P	HA⁻] ′⁻][H⁺]
H ₂ O	$K_w = [H^+]$	HP]][OH-]

Seven unknowns (in bold), need seven equations. K expressions give us four, we need three more.

Charge balance: $[H^+] = [HA^-] + 2[A^{2-}] + [P^-] + [OH^-]$

Mass balance for malonic acid: $0.10 \text{ M} = [\text{H}_2\text{A}] + [\text{HA}^-] + [\text{A}^2-]$

Mass balance for propionic acid: 0.20 M = [HP] + [P]

In the space below, answer either problem 11 or problem 12. 15 points.

11. I've given you the task of preparing a pH 4.75 buffer. You've sought the help of a few of your classmates and have narrowed your choices down to the following list. Each of these combinations should produce a buffer with pH=4.75. Which student's suggestion would provide the best choice to make the highest capacity buffer? Justify your reasoning

Student	Buffer Composition	K _a of weak acid
Annie Yun	0.200M salicylic acid and 0.0032 M sodium salicylate	1.1 x 10 ⁻³
Ty Trate	0.010 M acetic acid and 0.010 M sodium acetate	1.8 x 10 ⁻⁵
Chris Talls	0.200 M acetic acid and 0.200 M sodium acetate	1.8 x 10 ⁻⁵

For a buffer to have the best capacity, we would like the pK_a for the weak acid to be as close to the desired pH as possible, and we'd like a large concentration of both the weak acid and conjugate base to be present in the solution. The higher the concentration, the more strong acid or base can be absorbed without changing pH.

From the list above, Chris Talls recipe fits both requirements. Annie Yun suggests a combination which results in very dilute weak base because the pK_a is too far from the pH. Ty Trate has the ideal ratio of acid and conjugate base, but the dilute concentrations lead to poorer capacity that Chris' suggestion.

12. Your lab has synthesized a new weak, diprotic acid, that you have named *acidic* acid (creative!). The pK_{a1} for this acid is 4.26, while pK_{a2} is 11.08. What is the pH of a 0.100 M solution of acidic acid?

Looking at the K_a's, K_{a1} = 5.50 x 10^{-5} and K_{a2}= 8.32 x 10^{-12} , indicating that the HA⁻ is a much weaker acid than H₂A, therefore it will not appreciably contribute to the pH of the solution. So, we can treat this as a weak monoprotic acid.

$$H_2A \rightleftharpoons H^+ + A^-$$

Now we do the ICE thing:

	H_2A	\rightleftharpoons	H ⁺	+	HA
I –	0.100 M		0		0
С	-X		+x		+X
Е	0.100-x		х		Х

Inserting into the K_{a1} expression, we get:

$$K_{a1} = \underline{[H^+][HA^-]}_{[H_2A]} = \underline{x^2}_{0.100 - x}$$

After some algebra, $0 = x^2 + K_{a1}x - 0.100K_{a1}$ Solving for x, we get x = [H⁺] = [HA⁻] = **0.00231**₇ **M**, **pH = 2.64**.

We need to verify that ignoring K_{a2} was OK, or that $[A^{2-}] << [HA^{-}]$ $[A^{2-}] = K_{a2} \times [HA^{-}]/[H^{+}] = (8.32 \times 10^{-12})(0.00231M)/(0.00231M) = 8.32 \times 10^{-12} M$, which is much less than 0.00231 M, so ignoring K_{a2} is OK. (NOTE, since K_{a1} isn't extremely small, assuming x<< 0.100 is probably a bad idea.)

Possibly Useful Information

$$\begin{array}{ll} \mathsf{R} = 8.31441 \; \mathsf{J} \; \mathsf{mol}^{-1} \; \mathsf{K}^{-1} & {}^{\mathrm{o}}\mathsf{C} = \mathsf{K} - 273.15 \\ \Delta \mathsf{G} = \Delta \mathsf{H} - \mathsf{T} \Delta \mathsf{S} & \Delta \mathsf{G} = \Delta \mathsf{G}^{\mathrm{o}} - \mathsf{R}\mathsf{T} \mathsf{ln}\mathsf{Q} \\ \mathsf{p}\mathsf{H} + \mathsf{p}\mathsf{O}\mathsf{H} = 14 & \mathsf{K}_{\mathsf{a}}\mathsf{K}_{\mathsf{b}} = \mathsf{K}_{\mathsf{w}} \\ \mathsf{x} = \frac{-\mathsf{b} \pm \sqrt{\mathsf{b}^2 - 4\mathsf{ac}}}{2\mathsf{a}} & \mathsf{p}\mathsf{H} = \mathsf{p}\mathsf{K}_{\mathsf{a}} + \mathsf{log}\!\!\left(\!\frac{[\mathsf{conjugate}\;\mathsf{base}]}{[\mathsf{weak}\;\mathsf{acid}]}\right) \end{array}$$

1																	18
1A																	8A
1 H	2											13	14	15	16	17	2 He
1.00794	2A											3A	4A	5A	6A	7A	4.00260
3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C	7 N 14.0067	8 O 15,9994	9 F 18,9984	10 Ne 20.1797
11 Na 22.9898	12 Mg 24.3050	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al 26.9815	14 Si 28.0855	15 P 30.9738	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9381	26 Fe 55.847	27 Co 58.9332	28 Ni 58.693	29 Cu 63.546	30 Zn 65,39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79,904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	47 Ag 107.868	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126.904	54 Xe 131.29
55 Cs 132,905	56 Ba 137,327	57 *La 138.906	72 Hf 178,49	73 Ta 180.948	74 W 183.84	75 Re 186,207	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196,967	80 Hg 200,59	81 Tl 204,383	82 Pb 207.2	83 Bi 208,980	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr	88 Ra	89 †Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg							
(223)	226.025	227.028	(261)	(262)	(266)	(264)	(277)	(268)	(2/1)	(2/2)							

*Lanthanide series	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
[†] Actinide series	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Copyright © 2007 Pearson Prentice Hall, Inc.