b. c.	increase decrease	Answer								
d.	stay the same									
Under what conditions is CI_2 most likely to behave like an ideal gas?										
a. b. c. d.	100°C and 10.0 atm 0°C and 0.50 atm 200°C and 0.50 atm 400°C and 10.0 atm	Answer								
To precipitate Zn^{2+} from a solution of $Zn(NO_3)_2$, add										
a. b. c. d.	$\begin{array}{l} NH_4CI \\ MgBr_2 \\ K_2CO_3 \\ (NH_4)_2SO_4 \end{array}$	Answer								
In the half reaction in which NpO_2^+ is converted to Np^{4+} , the number of electrons appear in the half reaction is										
a. b. c. d.	1 2 3 4	Answer								
In the reaction of 2 mol CCl ₄ with an excess of HF, 1.70 mol CCl ₂ F ₂ is obtained.										
	$CCI_4 + 2 \; HF \to CCI_2F_2 + 2 \; HCI$									
a. b. c.	The theoretical yield is 1.70 mol CCl_2F_2 . The theoretical yield is 1.00 mol CCl_2F_2 . The theoretical yield depends on how large an excess of HF was used.	Answer								
d.	The percent yield is 85%.									

Part 0: Warmup. 4 points each

answers to discussion questions.

1. For a fixed amount of gas at a fixed pressure, changing the temperature from 100°C to 200K causes the gas volume to:

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your

a. double

5.

Chem 120

100 Points

Exam 2, Ch 4-6

- 2.
- 3.
- 4. ng

Name

October 16, 2008

1

Part I: Complete all of problems 6-10

Species	Name	Oxi	Water Soluble? (Y/N)			
Ca(ClO ₄) ₂		Ca =	CI =	O =		
Zn ₃ (PO ₄) ₂		Zn =	O =	P =		

6. Complete the chart below: (12 points)

 Ammonia can be generated by heating together the solids NH₄Cl and Ca(OH)₂ to produce NH₃, water, and CaCl₂. If a mixture containing 33.0 g each of ammonium chloride and calcium hydroxide is heated, how many grams of ammonia will form? (10 points)

- 8. Write the (1) *overall reaction* and (2) *net ionic equation* for the following reactions. Indicate the state of all reactants and products. (10 points)
 - a. Aqueous potassium sulfate with aqueous calcium chloride.
 - (1) Overall reaction:
 - (2) Net ionic equation:
 - b. Aqueous sodium carbonate with aqueous silver nitrate.
 - (1) Overall reaction:
 - (2) Net ionic equation:

Calculate the volume of hydrogen gas, measured at 26°C and 751 torr required to react with 28.5 L of carbon monoxide, measured at 0°C and 760 torr in the reaction below. (10 points) 3 CO (g) + 7 H₂ (g) → C₃H₈ (g) + 3 H₂O (l)

10. Redox reactions:

a. Balance the following reaction in acidic solution. (10 points) $UO^{2+} + NO_3^- \rightarrow UO_2^{2+} + NO(g)$

b. Permanganate ion can oxidize cyanide ion in acidic solution by the reaction below. $2 \text{ MnO}_4^- + 3 \text{ CN}^- + 2 \text{ H}^+ \rightarrow 2 \text{ MnO}_2 + 3 \text{ OCN}^- + \text{H}_2\text{O}$ Write the corresponding balanced reaction that would occur in basic solution. (2 points)

Part II. Answer two (2) of problems 11-14. Clearly mark the problem you do not want graded. 12 points each.

11. You are following a laboratory procedure to prepare a dilute chloride solution to use as a standard in an absorbance measurement. You prepare the standard by dissolving 1.45 g MgCl₂ in 100.0 mL of solution, which you label solution A. After mixing, you pipet 3.00 mL of solution A to a 50.0 mL volumetric flask, and dilute to the mark to prepare solution B. Finally, you pipet 2.00 mL of solution B into a 25 mL volumetric flask and dilute to the mark to prepare solution C. What is the molarity of *chloride ions* in solution C? Assume MgCl₂ is a strong electrolyte.

12. Dichlorodifluoromethane, once widely used as a refrigerant, can be prepared by the balanced reactions shown. How many moles of Cl₂ must be consumed to produce 2.25 kg CCl₂F₂? What volume would this Cl₂ gas occupy at STP? Assume all the CCl₄ produced in the first reaction is consumed in the second.

 $\begin{array}{c} \mathsf{CH}_4 + 2 \ \mathsf{Cl}_2 \rightarrow \mathsf{CCl}_4 + 4 \ \mathsf{HCl} \\ \mathsf{CCl}_4 + 2 \ \mathsf{HF} \rightarrow \mathsf{CCl}_2\mathsf{F}_2 + 2 \ \mathsf{HCl} \end{array}$

13. A NaOH solution cannot be made up to an exact concentration simply by weighing out the required mass of solid NaOH, because the NaOH is not pure. Also, water vapor condenses on the solid as it is weighed. To determine the concentration of such solutions, they must be standardized by titration. For this purpose, a 25.00 mL sample of NaOH solution requires 33.61 mL of 0.1086 M HCI. What is the molarity of the NaOH? Include a balanced reaction in your solution.

14. A 2.89 g aluminum ore sample is reacted with excess HCl in the reaction below, and the liberated H₂ is collected over water at 25°C at a barometric pressure of 744 mm Hg. If 322 mL of hydrogen is collected, what is the percent aluminum (by mass) in the ore sample?
2 Al(s) + 6 HCl (aq) → 2 AlCl₃(aq) + 3 H₂(g)

R = 0.08206 L atm mol ⁻¹ K ⁻¹	STP = 1 atm, 0°C
1 atmosphere = 760 Torr	$\left(\mathbf{P}+\mathbf{a}\left(\frac{\mathbf{n}}{\mathbf{V}}\right)^{2}\right)\left(\mathbf{V}-\mathbf{bn}\right)=\mathbf{nRT}$
$P_{total} = n_{total}RT/V$	$P_A = X_a P_{total}$
$N_a = 6.02214 \text{ x } 10^{23} \text{ mol}^{-1}$	$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

Possibly Useful Information

Molar Masses										
Compound	Molar Mass (g/mol)									
AICI ₃	133.3396									
C ₃ H ₈	44.097									
Ca(OH) ₂	74.093									
CaCl ₂	110.983									
CCI_2F_2	120.913									
CCl ₄	153.822									
CH_4	16.043									
Cl ₂	70.9504									
CO	28.010									
H ₂	2.01588									
H ₂ O	18.0153									
HCI	36.4606									
HF	20.00634									
MgCl ₂	94.2104									
NaOH	39.9971									
NH ₃	17.0356									
NH₄CI	53.4912									

Vapor Pressure of Water at Various Temperatures								
Temperature (°C)	Vapor Pressure (mmHg)							
15.0	12.79							
17.0	14.53							
19.0	16.48							
21.0	18.65							
23.0	21.07							
25.0	23.76							
30.0	31.82							
50.0	92.51							

Copyright © 2007 Pearson Prentice Hall, Inc.

TABLE 5.1 Solubility Guidelines for Common Ionic Solids

Follow the lower-numbered guideline when two guidelines are in conflict. This leads to the correct prediction in most cases.

- 1. Salts of group 1 cations (with some exceptions for Li⁺) and the NH₄⁺ cation are soluble.
- 2. Nitrates, acetates, and perchlorates are soluble.
- 3. Salts of silver, lead, and mercury(I) are insoluble.
- 4. Chlorides, bromides, and iodides are soluble.
- Carbonates, phosphates, sulfides, oxides, and hydroxides are insoluble (sulfides of group 2 cations and hydroxides of Ca²⁺, Sr²⁺, and Ba²⁺ are slightly soluble).
- 6. Sulfates are soluble except for those of calcium, strontium, and barium.

		e 1																_						
[†] Act	*Lan		(223)	Fr	132.905	Cs	55	85.4678	Rb	37	39.0983	K	19	22.9898	11 Na	6.941	Li	در د	1.00794	H 1	1A	р		
inide se	thanide		226.025	Ra	137.327	Ва	56	87.62	Sr	38	40.078	Ca	20	24.3050	12 Mg	9.01218	Be	4	2A	2				
eries	e series		227.028	⁺ Ac	138.906	*La	57	88.9059	K	39	44.9559	Sc	21	3B	ω									
					(261)	Rf	178.49	Hf	72	91.224	Zr	40	47.88	Ti	22	4B	4							
90 Th 232.038	58 Ce 140.115		(262)	Db	180.948	Ta	73	92.9064	NP	41	50.9415	V	23	5B	ы									
91 Pa 231.036	59 Pr 140.908		(266)	Sg	183.84	W	74	95.94	Mo	42	51.9961	Ç	24	6B	6									
92 U 238.029	60 Nd 144.24		(264)	Bh	186.207	Re	75	(98)	Tc	43	54.9381	Mn	25	7B	7									
93 Np 237.048	61 Pm (145)		(277)	Hs	190.23	Os	76	101.07	Ru	44	55.847	Fe	26		8									
94 Pu (244)	62 Sm 150.36		(268)	Mt	192.22	Ir	77	102.906	Rh	45	58.9332	Co	27	-8B-	9									
95 Am (243)	63 Eu 151.965		(271)	Ds	195.08	Pt	78	106.42	Pd	46	58.693	Ni	28		10									
96 Cm (247)	64 Gd 157.25		(272)	Rg	196.967	Au	79	107.868	Ag	47	63.546	Cu	29	1B	11									
97 Bk (247)	65 Tb 158.925				200.59	Hg	80	112.411	Cd	48	65.39	Zn	30	2B	12									
98 Cf (251)	66 Dy 162.50				204.383	Π	81	114.818	In	49	69.723	Ga	31	26.9815	13 Al	10.811	В	л	3A	13				
99 Es (252)	67 Ho 164.930				207.2	РЬ	82	118.710	Sn	50	72.61	Ge	32	28.0855	14 Si	12.011	n.	Ч	4A	14				
100 Fm (257)	68 Er 167.26				208.980	Bi	83	121.757	Sb	51	74.9216	As	33	30.9738	15 P	14.0067	Z	7	5A	15				
101 Md (258)	69 Tm 168.934				(209)	Po	84	127.60	Te	52	78.96	Se	34	32.066	16 S	15.9994	0	×	6A	16				
102 No (259)	70 Yb 173.04				(210)	At	85	126.904	I	53	79.904	Br	35	35.4527	CI 17	18.9984	Ţ	9	7A	17				
103 Lr (262)	71 Lu 174.967				(222)	Rn	86	131.29	Xe	54	83.80	Kr	36	39.948	18 Ar	20.1797	Ne	10	4.00260	2 He	8A	18		

Copyright © 2007 Pearson Prentice Hall, Inc.