Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions. ### Part 0: Warmup. 4 points each | For a fixed amount of gas at a fixed pressure, changing the temperature from 100°C to 200K causes the gas volume to: | |--| | | | a. | double | | | |----|---------------|--------|----| | b. | increase | | | | C. | decrease | Answer | _C | | d. | stay the same | | | | 2 | Under what | | \sim \sim \sim | | | منانا منتمط | امماء مما | ~~~ | |---|--------------|--------------|----------------------|--------------|---------|-------------|------------|--------| | _ | Under what | conditions i | IS Labor | most likei | v io ne | MAVE IIKE | an Ideal | cias c | | | Olidoi Wildt | oonand i | 0.2 | THOOL III.OI | , | TIGVO IIIKO | , an iacai | gao. | | a. | 100°C and 10.0 atm | | | | |----|--------------------|----|-------|---| | b. | 0°C and 0.50 atm | | | | | C. | 200°C and 0.50 atm | Ar | nswer | C | | d. | 400°C and 10.0 atm | | | | | | | | | | - 3. To precipitate Zn^{2+} from a solution of $Zn(NO_3)_2$, add - a. NH_4CI b. $MgBr_2$ c. K_2CO_3 Answer _____C___ d. $(NH_4)_2SO_4$ - 4. In the half reaction in which NpO_2^+ is converted to Np^{4+} , the number of electrons appearing in the half reaction is - a. 1 b. 2 c. 3 d. 4 - 5. In the reaction of 2 mol CCl_4 with an excess of HF, 1.70 mol CCl_2F_2 is obtained. $$CCI_4 + 2 HF \rightarrow CCI_2F_2 + 2 HCI$$ - a. The theoretical yield is 1.70 mol CCl₂F₂. b. The theoretical yield is 1.00 mol CCl₂F₂. - c. The theoretical yield depends on how large an excess of HF was used. Answer _____D___ d. The percent yield is 85%. #### Part I: Complete all of problems 6-10 6. Complete the chart below: (12 points) | Species | Name | Oxidation States | | | Water
Soluble?
(Y/N) | |---|---------------------|------------------|---------|--------|----------------------------| | Ca(ClO ₄) ₂ | calcium perchlorate | Ca =+2 | CI = +7 | O = -2 | Y | | Zn ₃ (PO ₄) ₂ | zinc (II) phosphate | Zn =+2 | O = -2 | P = +5 | N | 7. Ammonia can be generated by heating together the solids NH₄Cl and Ca(OH)₂ to produce NH₃, water, and CaCl₂. If a mixture containing 33.0 g each of ammonium chloride and calcium hydroxide is heated, how many grams of ammonia will form? (10 points) $$2 \text{ NH}_4\text{Cl} + \text{Ca}(\text{OH})_2 \rightarrow 2 \text{ NH}_3 + 2 \text{ H}_2\text{O} + \text{Ca}\text{Cl}_2$$ $$33.0 \text{ g NH}_4\text{Cl} \times \underbrace{1 \text{ mol NH}_4\text{Cl}}_{53.4912 \text{ g}} \times \underbrace{2 \text{ mol NH}_3}_{2 \text{ mol NH}_4\text{Cl}} \times \underbrace{17.0356 \text{ g NH}_3}_{1 \text{ mol NH}_3} = 10.51 \text{ g NH}_3$$ $$33.0 \text{ g Ca}(\text{OH})_2 \times \underbrace{1 \text{ mol Ca}(\text{OH})_2}_{74.093 \text{ g}} \times \underbrace{2 \text{ mol NH}_3}_{1 \text{ mol Ca}(\text{OH})_2} \times \underbrace{17.0356 \text{ g NH}_3}_{1 \text{ mol NH}_3} = 15.17 \text{ g NH}_3$$ Since the ammonium chloride produces less, it must be the limiting reagent, so 10.5 g NH₃ will be formed. - 8. Write the (1) *overall reaction* and (2) *net ionic equation* for the following reactions. Indicate the state of all reactants and products. (10 points) - a. Aqueous potassium sulfate with aqueous calcium chloride. - (1) Overall reaction: $$K_2SO_4$$ (aq) + CaCl₂ (aq) \rightarrow CaSO₄ (s) + 2 KCl (aq) (2) Net ionic equation: $$Ca^{2+}$$ (ag) + SO_4^{2-} (ag) $\to CaSO_4$ (s) - b. Aqueous sodium carbonate with aqueous silver nitrate. - (1) Overall reaction: $$Na_2CO_3$$ (aq) + 2 AgNO₃(aq) \rightarrow Ag₂CO₃ (s) + 2 NaNO₃ (aq) (2) Net ionic equation: $$2 \text{ Ag}^+ \text{ (aq)} + \text{CO}_3^{2-} \text{ (aq)} \rightarrow \text{Ag}_2\text{CO}_3 \text{ (s)}$$ 9. Calculate the volume of hydrogen gas, measured at 26°C and 751 torr required to react with 28.5 L of carbon monoxide, measured at 0°C and 760 torr in the reaction below. (10 points) $$3 \text{ CO } (g) + 7 \text{ H}_2 (g) \rightarrow \text{C}_3\text{H}_8 (g) + 3 \text{ H}_2\text{O} (I)$$ $$n_{CO} = \frac{PV}{RT} = \frac{(1 \text{ atm})(28.5 \text{ L})}{(0.08206 \text{ L-atm/mol K})(273 \text{K})} = 1.272 \text{ mol CO}$$ $$1.272 \frac{\text{mol CO}}{3 \text{ mol CO}} \times \frac{7 \text{ mol H}_2}{3 \text{ mol CO}} = 2.969 \text{ mol H}_2$$ $$P_{H2} = 751 \text{ torr} \times \frac{1 \text{ atm}}{760 \text{ torr}} = 0.9882 \text{ atm}$$ $$V = \frac{nRT}{p} = \frac{(2.969 \text{ mol})(0.08206 \text{ L-atm/mol K})(299 \text{ K})}{(0.9882 \text{ atm})} = 73.7 \text{ L} = 74 \text{ L}$$ - 10. Redox reactions: - a. Balance the following reaction in acidic solution. (10 points) $$UO^{2+} + NO_3 \rightarrow UO_2^{2+} + NO(g)$$ Oxidation $$3(UO^{2+} + H_2O \rightarrow UO_2^{2+} + 2H^+ + 2e^-)$$ Reduction $2(NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O)$ Overall $3UO^{2+} + 3H_2O + 2NO_3^- + 8H^+ + 6e^- \rightarrow 3UO_2^{2+} + 6H^+ + 6e^- + 2NO + 4H_2O$ Final $$3UO^{2+} + 2NO_3^- + 2H^+ \rightarrow 3UO_2^{2+} + 2NO_2 + H_2O_3^-$$ b. Permanganate ion can oxidize cyanide ion in acidic solution by the reaction below. $$2 \text{ MnO}_4^- + 3 \text{ CN}^- + 2 \text{ H}^+ \rightarrow 2 \text{ MnO}_2 + 3 \text{ OCN}^- + \text{H}_2\text{O}$$ Write the corresponding balanced reaction that would occur in basic solution. (2 points) $$2 \text{ MnO}_4^- + 3 \text{ CN}^- + 2 \text{ H}^+ + 2 \text{ OH}^- \rightarrow 2 \text{ MnO}_2 + 3 \text{ OCN}^- + \text{H}_2\text{O} + 2 \text{ OH}^-$$ Since $$H^+ + OH^- = H_2O$$: $$2 \text{ MnO}_4^- + 3 \text{ CN}^- + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ MnO}_2 + 3 \text{ OCN}^- + \text{H}_2\text{O} + 2 \text{ OH}^-$$ After cancelling waters: $$2 \text{ MnO}_4^- + 3 \text{ CN}^- + \text{H}_2\text{O} \rightarrow 2 \text{ MnO}_2 + 3 \text{ OCN}^- + 2 \text{ OH}^-$$ # Part II. Answer two (2) of problems 11-14. Clearly mark the problem you do not want graded. 12 points each. 11. You are following a laboratory procedure to prepare a dilute chloride solution to use as a standard in an absorbance measurement. You prepare the standard by dissolving 1.45 g MgCl₂ in 100.0 mL of solution, which you label solution A. After mixing, you pipet 3.00 mL of solution A to a 50.0 mL volumetric flask, and dilute to the mark to prepare solution B. Finally, you pipet 2.00 mL of solution B into a 25 mL volumetric flask and dilute to the mark to prepare solution C. What is the molarity of *chloride ions* in solution C? Assume MgCl₂ is a strong electrolyte. $$MgCl_2$$ (aq) $\rightarrow Mg^{2+}$ (aq) + 2 Cl^- (aq) $$M_1V_1 = M_2V_2$$ For solution B: $$M_B = M_A V_A = (0.3078 \text{ M})(3.00 \text{ mL}) = 0.01847 \text{ M} = [B]$$ For solution C: $$M_C = M_B V_B = (0.01847 \text{ M})(2.00 \text{ mL}) = 0.001478 \text{ M} = [C]$$ $V_C = 25.00 \text{ mL}$ So, the molarity of chloride ions in solution C is 0.001478 M 12. Dichlorodifluoromethane, once widely used as a refrigerant, can be prepared by the balanced reactions shown. How many moles of Cl₂ must be consumed to produce 2.25 kg CCl₂F₂? What volume would this Cl₂ gas occupy at STP? Assume all the CCl₄ produced in the first reaction is consumed in the second. $$\begin{array}{c} CH_4 + 2 \ CI_2 \rightarrow CCI_4 + 4 \ HCI \\ CCI_4 + 2 \ HF \rightarrow CCI_2F_2 + 2 \ HCI \end{array}$$ How many moles of Cl₂ gas is needed? What volume will this gas occupy at STP? $$V = nRT = (37.22 \text{ mol})(0.08206 \text{ L} \frac{\text{atm/mol K}}{\text{mol K}})(273 \text{K}) = 833.7 \text{ L} = 834 \text{ L}$$ 13. A NaOH solution cannot be made up to an exact concentration simply by weighing out the required mass of solid NaOH, because the NaOH is not pure. Also, water vapor condenses on the solid as it is weighed. To determine the concentration of such soutions, they must be standardized by titration. For this purpose, a 25.00 mL sample of NaOH solution requires 33.61 mL of 0.1086 M HCl. What is the molarity of the NaOH? Include a balanced reaction in your solution. 33.61 mL HCl $$\times$$ 0.1086 mol HCl \times 1 mol NaOH \times 1 mol NaOH \times 1 mol HCl \times 25.00 mL \times 0.146 M NaOH 14. A 2.89 g aluminum ore sample is reacted with excess HCl in the reaction below, and the liberated H_2 is collected over water at 25°C at a barometric pressure of 744 mm Hg. If 322 mL of hydrogen is collected, what is the percent aluminum (by mass) in the ore sample? 2 Al(s) + 6 HCl (aq) \rightarrow 2 AlCl₃(aq) + 3 H₂(g) ## **Possibly Useful Information** | R = 0.08206 L atm mol ⁻¹ K ⁻¹ | STP = 1 atm, 0°C | |---|--| | 1 atmosphere = 760 Torr | $\left(P + a\left(\frac{n}{V}\right)^2\right)(V - bn) = nRT$ | | $P_{total} = n_{total}RT/V$ | $P_A = X_a P_{total}$ | | $N_a = 6.02214 \times 10^{23} \text{mol}^{-1}$ | $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$ | | Molar Masses | | | | | | |---------------------------------|--------------------|--|--|--|--| | Compound | Molar Mass (g/mol) | | | | | | AICI ₃ | 133.3396 | | | | | | C ₃ H ₈ | 44.097 | | | | | | Ca(OH) ₂ | 74.093 | | | | | | CaCl ₂ | 110.983 | | | | | | CCI ₂ F ₂ | 120.913 | | | | | | CCI ₄ | 153.822 | | | | | | CH ₄ | 16.043 | | | | | | Cl ₂ | 70.9504 | | | | | | CO | 28.010 | | | | | | H ₂ | 2.01588 | | | | | | H ₂ O | 18.0153 | | | | | | HCI | 36.4606 | | | | | | HF | 20.00634 | | | | | | MgCl ₂ | 94.2104 | | | | | | NaOH | 39.9971 | | | | | | NH ₃ | 17.0356 | | | | | | NH ₄ CI | 53.4912 | | | | | | Temperature
(°C) | Vapor
Pressure
(mmHg) | |---------------------|-----------------------------| | 15.0 | 12.79 | | 17.0 | 14.53 | | 19.0 | 16.48 | | 21.0 | 18.65 | | 23.0 | 21.07 | | 25.0 | 23.76 | | 30.0 | 31.82 | | 50.0 | 92.51 | Vapor Pressure of Water Copyright © 2007 Pearson Prentice Hall, Inc. ### **TABLE 5.1** Solubility Guidelines for Common Ionic Solids Follow the lower-numbered guideline when two guidelines are in conflict. This leads to the correct prediction in most cases. - 1. Salts of group 1 cations (with some exceptions for Li⁺) and the NH₄⁺ cation are soluble. - 2. Nitrates, acetates, and perchlorates are soluble. - 3. Salts of silver, lead, and mercury(I) are insoluble. - 4. Chlorides, bromides, and iodides are soluble. - 5. Carbonates, phosphates, sulfides, oxides, and hydroxides are insoluble (sulfides of group 2 cations and hydroxides of Ca²⁺, Sr²⁺, and Ba²⁺ are slightly soluble). - 6. Sulfates are soluble except for those of calcium, strontium, and barium. | 18 11 11 11 11 11 11 11 11 11 11 11 11 1 | | | | 1 | oo | ω | N | | | |--|--------------------------|---------------------|---------------------------|----------------------------|----------------------------|---------------------------|---------------------|---------------------------|------------------------------| | 13 | †Acti | *Lan | 87
Fr
(223) | 55
Cs | 37
Rb
85.4678 | 19
K
39.0983 | 11
Na
22.9898 | 3
Li
6.941 | 1
1A
1
H
1.00794 | | 13 14 15 16 17 | nide s | thanid | 88
Ra
226.025 | 56
Ba
137.327 | 38
Sr
87.62 | 20
Ca
40.078 | 12
Mg
24.3050 | 4
Be
9.01218 | 2
2 _A | | 13 14 15 16 17 17 18 18 18 18 19 19 19 19 | eries | e series | 89
†Ac
227.028 | 57
*La
138.906 | 39
Y
88.9059 | 21
Sc
44.9559 | 3
3B | | | | 66 7 8 9 10 11 12 33 44 5A 6A 7A 6B 7B 8B 9 10 11 12 | | | 104
Rf
(261) | 72
Hf
178.49 | 40
Zr
91.224 | 22
Ti
47.88 | 4
4B | | | | To To To To To To To To | 90
Th
232.038 | 58
Ce
140.115 | 105
Db
(262) | 73
Ta
180.948 | 41
Nb
92.9064 | 23
V
50.9415 | 5B | | | | 8 9 10 11 12 3A 4A 5A 6A 7A 8B 1B 2B 29.30 31 31 32 32.06 35.4627 8B 29 30 31 32 32.05 32.06 35.4627 8B 29 30 31 32 32 33 34 35 Fe Co Ni Cu Zn Ga Ge As Se Br 100.42 107.86 112.41 114.818 118.710 121.757 127.60 126.904 Ru Rh Pd Ag Cd In Sh Sh Sh Te Pt Au Hg I1 Pb Bi Po At 1190.23 192.22 195.08 196.967 200.59 204.383 207.2 208.980 (209) (210) 108 199 110 111 Pb Bi Po At 11 Pb Bi Po At 11 Pr | 91
Pa
231.036 | 59
Pr
140.908 | 106
Sg
(266) | 74
W
183.84 | 42
Mo
95.94 | 24
Cr
51.9961 | 6
6B | | | | 9 10 11 12 | 92
U
238.029 | 60
Nd
144.24 | 107
Bh
(264) | 75
Re
186.207 | 43
Tc
(98) | 25
Mn
54.9381 | 7
7B | | | | 13 | 93
Np
237.048 | 61
Pm
(145) | 108
Hs
(277) | 76
Os
190.23 | 44
Ru
101.07 | 26
Fe
55.847 | ∞ | | | | 13 14 15 16 17 3A 4A 5A 6A 7A 11 12 13 14 15 16 17 B CC N O F 10.811 12.011 14.0067 15.9994 18.9984 11 12 Al Si P S Cl 1B 2B 26.9815 28.0855 30.9738 32.066 35.4527 29 30 31 32 33 34 35 Cu Zn Ga Ge As Se Br 63.546 65.39 69.723 72.61 74.9216 78.96 79.904 47 48 49 50 51 52 53 Au Hg Tl Pb Bi Po At 196.967 200.59 204.383 207.2 208.980 (209) 1111 Rg CGd Tb Dy Ho Er Tm Yb 157.25 158.925 162.50 164.930 167.26 168.934 173.04 96 97 98 99 100 101 102 Cm Bk Cf Es Fm Mdd No (247) (251) (252) (257) (258) (259) | 94
Pu
(244) | 62
Sm
150.36 | 109
Mt
(268) | 77
Ir
192.22 | 45
Rh
102.906 | 27
Co
58.9332 | -8B- | | | | 13 14 15 16 17 3A 4A 5A 6A 7A 10.811 12.011 14.0067 15.9994 18.9984 112 Al Si P S Cl 2B 26.9815 28.0855 30.9738 32.066 35.4527 2B 26.723 72.61 74.9216 78.96 79.904 48 49 50 51 74.9216 78.96 79.904 48 49 50 51 74.9216 78.96 79.904 48 49 50 51 72.757 127.60 126.904 80 81 18.710 121.757 127.60 126.904 80 81 P Bi Po At 85 Hg Tl Pb Bi Po At 15.999 100 101 102 80 99 100 101 102 80 10259 162.50 164.930 167.26 168.934 173.04 80 102 103 104 No 105 1259 | 95
Am
(243) | 63
Eu
151.965 | 110
Ds
(271) | 78
Pt
195.08 | 46
Pd
106.42 | 28
Ni
58.693 | 10 | | | | 13 14 15 16 17 3A 4A 5A 6A 7A B C N O F 10.811 12.011 14.0067 15.9994 18.9984 13 14 15 16 17 A1 Si P S CI 26.9815 28.0855 30.9738 32.066 35.4527 33 32 33 34 35 Ge As Se Br 69.723 72.61 74.9216 78.96 79.904 81 82 83 Se Br 114.818 118.710 121.757 127.60 126.904 81 82 83 Po At 204.383 207.2 208.980 (209) (210) 162.50 164.930 167.26 168.934 173.04 98 100 101 102 102 10 101 102 102 259 10 10 10 | 96
Cm
(247) | 64
Gd
157.25 | 111
Rg
(272) | 79
Au
196.967 | 47
Ag
107.868 | 29
Cu
63.546 | 11
1B | | | | 14 15 16 17 4A 5A 6A 7A 6 7 8 9 C N O F 12.011 14.0067 15.9994 18.9984 14 15 16 17 Si P S Cl 28.0855 30.9738 32.066 35.4527 32 33 34 35 Ge As Se Br 72.61 74.9216 78.96 79.904 82 83 84 85 Pb Bi Po At 207.2 208.980 (209) (210) 85 Fm Md No 164.930 167.26 168.934 173.04 100 101 102 No 255 100 101 102 102 259 257 (259) (259) | 97
Bk
(247) | 65
Tb
158.925 | | 80
Hg
200.59 | 48
Cd
112.411 | 30
Zn
65.39 | 12
2B | | | | 15 16 17 5A 6A 7A 7A 7 8 9 N O F 14.0067 15.9994 18.9984 15 16 17 P S CI 30.9738 32.066 35.4527 33 34 35 As Se Br 74.9216 78.96 79.904 51 121.757 127.60 126.904 83 84 85 Bi Po At 208.980 (209) (210) 68 69 70 100 101 102 Fm Md No (257) (258) (259) | 98
Cf
(251) | 66
Dy
162.50 | | 81
T1
204.383 | 49
In
114.818 | 31
Ga
69.723 | 13
Al
26.9815 | 5
B
10.811 | 13
3A | | 16 17 6A 7A 8 9 O F 15.9994 18.9984 16 17 S CI 32.066 35.4527 34 35 Se Br 78.96 79.904 88 85 Po At (209) (210) 101 No (258) (259) | 99
Es
(252) | 67
Ho
164.930 | | 82
Pb
207.2 | 50
Sn
118.710 | 32
Ge
72.61 | 14
Si
28.0855 | 6
C
12.011 | 14
4A | | 17
7A
9
F
18.9984
17
Cl
35.4527
35
Br
79.904
53
I
126.904
At
(210)
70
No
(259) | 100
Fm
(257) | 68
Er
167.26 | | 83
Bi
208.980 | 51
Sb
121.757 | 33
As
74.9216 | 15
P
30.9738 | 7
N
14.0067 | 15
5A | | | 101
Md
(258) | 69
Tm
168.934 | | 84
Po
(209) | 52
Te
127.60 | 34
Se
78.96 | 16
S
32.066 | 8
O
15.9994 | 16
6A | | 18 8A 8A 10 10 Ne 20.179 18 Ar 39.94 18 Ar 39.94 18 Ar 19 131.2 83.80 54 Xe Rn (222) | 102
No
(259) | 70
Yb
173.04 | | 85
At
(210) | 53
I
126.904 | 35
Br
79.904 | 17
CI
35.4527 | 9
F
18.9984 | 17
7A | | 7 | 103
Lr
(262) | 71
Lu
174.967 | | 86
Rn
(222) | 54
Xe
131.29 | 36
Kr
83.80 | 18
Ar
39.948 | 10
Ne
20.1797 | 18
8A
He
4.00260 | Copyright © 2007 Pearson Prentice Hall, Inc.