Chem 120	Name
Exam 1, Ch 1-3	September 19, 2008
100 Points	

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part 0: Warmup. 4 points each

- 1. When 10.0 g zinc and 8.0 g sulfur are allowed to react, all of the zinc is consumed and 15.0 g zinc sulfide is produced. The mass of unreacted sulfur remaining is:
 - a. 2.0 g

	 b. 3.0 g c. 5.0 g d. Impossible to predict from this information alone. 	Answer	B	
2.	The standard deviation provides information abouta. the proximity of a value to the "true value"b. the scatter of a dataset around a mean.c. the accuracy of your data.d. the presence of systematic errors in your measurement.	Answer	В	
3.	 A good example of a homogeneous mixture is: a. a cola drink in a tightly capped bottle b. pure, distilled water leaving a distillation apparatus c. oxygen gas in a cylinder used for welding d. the material produced in a kitchen blender 	Answer	A	
4.	Choose the INCORRECT statement from those given below. a. All matter is composed of atoms. b. All atoms of a given element are identical.			

Answer _____B _____

Part I: Complete all of problems 5-10

5. Complete the following table. (12 points)

c. Atoms combine in small, whole numbered ratios.

d. Different ratios of atoms produce different compounds.

Symbol	⁵⁵ Mn	⁶⁵ Zn	⁸⁰ Br ²⁻
# of protons	25	30	35
# of neutrons	30	35	45
# of electrons	25	30	37
Charge	0	0	0
Name	manganese -55	zinc-65	bromide-80 ion

Note that while Br² is not realistic (Br is), it can still be named using regular naming rules

6. Name the following compounds or provide the correct formula for the given names. (18 points)

a.	Co(NO ₃) ₂	copper (II) nitrate
b.	ammonium chloride	NH₄CI
C.	BF ₃	boron trifluoride
d.	tricarbon disulfide	C ₃ S ₂
e.	magnesium perchlorate	Mg(ClO ₄) ₂
f.	Na ₂ SO ₄	sodium sulfate

7. Bromine exists as two isotopes with nearly equal abundance. The average mass of a bromine atom is 79.904 amu. If you were able to pick up a single bromine atom, what is the chance that you would randomly get one with a mass of 79.904 amu? No calculations are needed, but you must clearly justify your answer. (8 points)

There is zero chance of finding an atom of mass 79.904 amu. Because 79.904 amu must be the "weighted average" of the masses of individual isotopes, and because there are only two isotopes, neither can have mass 79.904 amu. One isotope must have a mass greater than 79.904 amu and one must have a mass smaller than 79.904 amu

 Magnesium occurs in seawater to the extent of 1.40 g magnesium per kilogram of seawater. What volume of seawater, in liters, would have to be processed to produce 1.00 ton of magnesium? (1 ton = 907.1 kg, density of seawater = 1.08 kg/L). (8 points)

So, 600,000 liters of seawater must be processed (3 sig.figs.)

9. Which is the larger mass, 3245 μ g or 0.00515 mg? (8 points)

3245
$$\mu$$
g x 10⁻⁶g x 1 mg = 3.245 mg **and** 0.00515 mg x 10⁻³g x 1 μ g = 5.15 μ g
1 μ g 10⁻³g 10⁻⁶g

So, 3245 μg is the larger mass.

10. How many copper atoms are present in a piece of sterling silver jewelry weighing 33.24 g? Sterling silver is a silver-copper alloy containing 92.5% silver by mass with the balance being copper. (8 points)

If the alloy is 92.5% silver, it must be 100%-92.5% = **7.5% copper** 33.24 g alloy x <u>7.5 g Cu</u> x <u>1 mol Cu</u> x <u>6.022 x 10²³ atoms</u> = **2.4 x 10²²Cu atoms** 100 g alloy 63.546 g Cu 1 mol

Part II. Answer two (2) of problems 11-14. Clearly mark the problem you do not want graded. 10 points each.

11. Copper has two stable isotopes, ⁶³Cu and ⁶⁵Cu, with masses of 62.9396 amu and 64.9278 amu, respectively. What are the percent abundances of each of these isotopes? Why aren't the masses of the isotopes 63.0000 and 65.0000?

 $\begin{array}{l} F_{63}M_{63}+F_{65}M_{65}=63.546 \text{ amu} \\ F_{63}+F_{65}=1 \\ (1\text{-}F_{65})(92.9396 \text{ amu})+F_{65}(94.9278 \text{ amu})=63.546 \text{ amu} \\ 1.9882 \text{ amu}(F_{65})=0.6064 \text{ amu} \end{array}$

$$\begin{split} F_{65} &= 0.3049 = \textbf{30.5\%}~^{65}\textbf{Cu} \\ F_{63} &= 1 - F_{65} = 0.6950 = \textbf{69.5\%}~^{63}\textbf{Cu} \end{split}$$

The fact that the masses of each isotope are not integers is due in large part to the "mass defect", which is the loss in mass due to the energy required to hold the nucleus together.

12. The mineral spodumene has the empirical formula LiAlSi₂O₆. Given that the percentage of lithium-6 (⁶Li) atoms in naturally occurring lithium is 7.40%, how many lithium-6 atoms are present in a 518 g sample of spodumene?

 $\underbrace{\begin{array}{c} 518 \text{ g-LiAlSi}_2 \Theta_6 \\ 186.0899 \text{ g-LiAlSi}_2 \Theta_6 \end{array}}_{2.7836 \text{ mol-Li}} \times \underbrace{\begin{array}{c} 1 \text{ mol-LiAlSi}_2 \Theta_6 \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}} \times \underbrace{\begin{array}{c} 1 \text{ mol-LiAlSi}_2 \Theta_6 \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{2.7836 \text{ mol-Li}} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-Li}} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-Li}} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6 \end{array}}_{1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \Theta_6} \times \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \oplus \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \oplus \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \oplus \underbrace{\begin{array}{c} 2.7836 \text{ mol-Li} \\ 1 \text{ mol-LiAlSi}_2 \oplus \underbrace{\begin{array}{c} 2.7836 \text{ mol-$

13. The compound di-ethylene glycol monomethyl ether (di-EGME) is added to jet fuel to minimize the possibility of ice formation in the fuel tanks at high altitude. Elemental analysis has determined that di-EMGE is 49.98% carbon and 39.95% oxygen by weight, with the remainder of the compound being hydrogen. If the molar mass of di-EMGE is 120.1469 g/mol, what are the empirical and molecular formulas for this compound?

[100 - (49.98 + 39.95)]% = 10.07% H

Assume 100 g of EGME

 $49.98 \text{ g C} \times \underline{1 \text{ mol C}}_{12.0112 \text{ g}} = 4.153 \text{ mol C}$ $39.95 \text{ g O} \times \underline{1 \text{ mol O}}_{15.9994 \text{ g}} = 2.497 \text{ mol O}$ $10.07 \text{ g H} \times \underline{1 \text{ mol H}}_{1.0079 \text{ g}} = 9.990 \text{ mol O}$ $C_{4.153}H_{9.990}O_{2.497} \rightarrow C_{1.66}H_4O \rightarrow C_5H_{12}O_3 = \text{Empirical formula}$

Is this also the molecular formula? [5(12.0112 g) + 12(1.0097) + 3(15.9994)] g/mol = 120.1706 g/molTherefore C₅H₁₂O₃ is also the molecular formula.

14. While Dalton's atomic theory is still the foundation for our understanding of basic chemical principles, our ability to better characterize atoms and compounds has identified a few shortcomings or errors in the theory. Indentify the four key tenets of Dalton's theory and describe at least one shortcoming or error in the theory.

The four key points are

- 1. All matter is made of Atoms, which are indivisible.
- 2. All atoms of a given element are identical
- 3. Compounds are the result of a combination of two or more different kinds of atoms
- 4. Chemical reactions involve the combination, separation or rearrangement of atoms

The key shortcoming is that Dalton's theory does not account for the presence of isotopes, which are atoms of the same element that are not identical because they have different numbers of neutrons.

We also now know that atoms can be split into smaller components (protons, neutrons, electrons and smaller).

Possibly Useful Information

$e_4 = \sqrt{e_1^2 + e_2^2 + e_3^2}$	$\frac{\mathbf{e_4}}{\mathbf{v_4}} = \sqrt{\left(\frac{\mathbf{e_1}}{\mathbf{v_1}}\right)^2 + \left(\frac{\mathbf{e_2}}{\mathbf{v_2}}\right)^2 + \left(\frac{\mathbf{e_3}}{\mathbf{v_3}}\right)^2}$
$\mu = \overline{x} + \frac{ts}{\sqrt{n}}$	$\overline{\mathbf{x}} = \frac{\sum \mathbf{x}_i}{n}$
There's an evil monkey in my closet!	$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$
$N_a = 6.02214 \text{ x } 10^{23} \text{ mol}^{-1}$	D = m/v

1																	18
1A																	8A
1 H	2											13	14	15	16	17	2
1.00794	2A											3A	4A	5A	6A	7A	4.00260
3	4											5	6	7	8	9	10 N.
L1 6.941	9.01218											D 10.811	12.011	IN 14.0067	15.9994	Г 18.9984	1Ne 20.1797
11 N.	12	3	4	5	6	7	8	9	10	11	12	13	14	15 D	16	17	18
1Na 22.9898	24.3050	3B	4B	5B	6B	7B	-	-8B-	-	1B	2B	AI 26.9815	51 28.0855	P 30.9738	32.066	35.4527	Ar 39.948
19 1/	20	21	22 T:	23 V	24 Cm	25	26 E a	27	28	29 Car	30	31	32	33	34	35 B.,	36
K 39.0983	40.078	5C 44.9559	47.88	V 50.9415	Cr 51.9961	1VIN 54.9381	55.847	58.9332	1N1 58.693	63.546	65.39	69.723	72.61	AS 74.9216	5e 78.96	Dr 79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.4678	87.62	Y 88.9059	Zr 91.224	Nb 92.9064	M0 95.94	1 C (98)	Ru 101.07	Rh 102.906	Pd 106.42	Ag 107.868	Cd 112.411	In 114.818	Sn 118.710	Sb 121.757	127.60	1 126.904	Xe 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.905	Ba 137.327	*La 138,906	Hf 178.49	Ta 180.948	W 183.84	Re 186.207	Os 190.23	Ir 192.22	Pt 195.08	Au 196,967	Hg 200.59	204.383	207.2	B1 208,980	(209)	At (210)	(222)
87	88	89	104	105	106	107	108	109	110	111						1	
Fr (223)	Ra	^T Ac	Rf (261)	Db (262)	Sg (266)	Bh (264)	Hs (277)	Mt (268)	Ds (271)	Rg (272)							
(223)	220.023	227.028	(201)	(202)	(200)	(204)	(2/7)	(208)	(2/1)	(2/2)	1						

*Lanthanide series	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
[†] Actinide series	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Copyright © 2007 Pearson Prentice Hall, Inc.