Electronics: Why do we care?
Two main reasons

• Every instrumental measurement involves a *transduction* step that converts a chemical/physical response into an electrical signal.
 – Need to ensure that signal is a good reflection of the response

• Many instruments are now interfaced with computers
 – Need to ensure that analog and digital components communicate effectively

Signal Transduction: Data Domains

• Information can be “stored” or communicated in several ways
Golden Rules of Circuits: Dust off the physics!

- Ohm’s Law:
 - Voltage drop across a resistor is proportional to the flow of electrons (current) through the resistor and the magnitude of the resistance
 \[E = IR \]

- Kirchoff’s Laws:
 - All of the currents in and out of a node must sum to zero.
 - The voltages around a loop must sum to zero

- Power Dissipation:
 - The power dissipated in a circuit is related to the current and the resistance of the circuit
 \[P = IE = I^2R \]

Basic Circuits: Passive Components

- Two main types: Resistors and Capacitors

- Resistance in circuits
 - Series:
 - Parallel:
Capacitance: Charge Storage

- Store charge by applying potential (Voltage) across a dielectric.
 \[C = \frac{Q}{V} \text{ (C has units of Farads)} \]

- Capacitors are affected by changing currents and voltages
 \[\frac{dQ}{dt} = I = C \frac{dV}{dt} \]

- Capacitors in series and parallel:
 - Series:
 - Parallel:

Important Passive Component Combinations

- Voltage Divider
Important Passive Component Combinations

- Series RC Circuit

\[V_s \]
\[C \]
\[R \]

Semiconductor Devices

- Diodes
 - greater conductivity in one direction
 - Made by coupling n-type and p-type semiconductors

- Transistors
 - Combinations of diode junctions
 - Useful for switching and amplification
Diodes

- Band or other mark on cathode end
- Light-emitting Diode (LED)

Power Supplies
- Convert AC to DC to operate semiconductor devices
- Two functions
 - Remove oscillation in voltage
 - Establish constant voltage
Operational Amplifiers

- **Solid-state device**
 - combination of transistors, diodes, resistors, capacitors on a chip
 - many, many applications!

- **General Characteristics:**
 - All potentials are relative to *circuit common*
 - Response: $v_o = A(v_+ - v_-)$
 - Ideal characteristics:
 - Large open loop gain (A)
 - High input impedance: no current through the op-amp!
 - Low output impedance:

Op-Amps

![Op-Amps diagram](image-url)
Op-Amp Circuit Analysis

- Remember A is huge (10^4 to 10^6 or larger)
- AND no current through the op-amp!
Op-Amp Possibilities (only a few)

Practical Considerations

- Common wiring pattern
 - Power supply connections (+/- 15 VDC)
 - “Trim” connections
 - offset voltage compensation

- Response time considerations:
 - Slew Rate
Communications between an Instrument and a Computer: Analog Regime to Digital Regime

- In order for information to be transferred an analog to digital conversion must occur.
 - Analog: continuous in magnitude and time
 - Digital: discontinuous, finite number of values, "quantized"

- Centered on binary logic
 - only two states: "on" and "off"
 - Example: 8-bit binary number: 10010110

 - Least Significant Bit (LSB):

Counting with Flip-Flop Logic

- Flip-flop: Only changes output when the input changes from 1 to 0 (only one direction)
A/D and D/A Conversion

• From instrument to computer:
 A/D Conversion

 Figure 4.4 A successive-approximation ADC. (a) output of the DAC during the conversion process, (b) block diagram of the ADC.

• From computer to instrument:
 D/A Conversion

 Figure 4.7 A 4-bit digital-to-analog (DAC) converter. Here A, B, C, and D are +5 V for logic state 1 and are 0 V for logic state 0.

• Resolution Considerations
 – What if we need to encode (or decode) a ±2V signal with resolution of 1mV? How many bits do we need?
Considerations of Analog↔Digital Conversion

- Sampling Considerations: Need the digital signal to be a good representation of real life.
 - Counting
 - Timing
 - A/D or D/A conversion

- Aliasing

- Rule of thumb: Signals should be sampled at a rate at least twice the highest frequency component of the signal. (Nyquist Theorem)