Polyprotic Acid/Base Equilibria

General considerations are the same as monoprotic acids/bases:

$$H_2A = H^+ + HA^ K_{a1} = \frac{[H^+][HA^-]}{[H_2A]}$$
 $HA^- = H^+ + A^ K_{a2} = \frac{[H^+][A^-]}{[HA^-]}$

Lets look at this one species at a time, we'll use sulfurous acid (H₂SO₃) as a model compound:

$$H_2SO_3 = H^+ + HSO_3^ K_{a1} = \frac{[H^+][HSO_3^-]}{[H_2SO_3^-]} = 1.23x10^{-2}$$

$$\text{HSO}_3^- = \text{H}^+ + \text{SO}_3^{2-}$$
 $\text{K}_{a2} = \frac{[\text{H}^+][\text{SO}_3^{2-}]}{[\text{HSO}_3^-]} = 6.6 \text{x} 10^{-8}$

_

Polyprotic Acid/Base Equilibria...Chemistry!

$$K_{a1} = \frac{[H^+][HSO_3^-]}{[H_2SO_3^-]} = 1.23x10^{-2} \qquad K_{a2} = \frac{[H^+][SO_3^{2^-}]}{[HSO_3^-]} = 6.6x10^{-8}$$

What is the pH of a solution prepared by dissolving 0.10 mol $\rm H_2SO_3$ in 1.00 L water?

- · What does the chemistry tell you?
- Look at the K_a's, H₂SO₃ is a much stronger acid than HSO₃-, what does this mean??

Polyprotic Acid/Base Equilibria...Chemistry!

What is the pH of a solution prepared by dissolving 0.10 mol Na_2SO_3 in 1.00 L water?

 SO₃²⁻ is the dibasic (fully deprotonated) form of this weak acid, so let's look at K_b's

$$SO_3^{2-} + H_2O = OH^- + HSO_3^{-}$$
 $K_{b1} = \frac{K_w}{K_{a2}} = 1.51x10^{-7}$ $HSO_3^{-} + H_2O = OH^- + H_2SO_3$ $K_{b2} = \frac{K_w}{K_{a1}} = 8.13x10^{-13}$

 Since SO₃²⁻ is a much stronger base than HSO₃⁻, we can solve a monoprotic base problem:

3

Amphiprotic Species

What is the pH of a solution prepared by dissolving 0.10 mol NaHSO_3 in 1.00 L water?

HSO₃⁻ is the amphiprotic form of this weak acid, the problem is a little tougher.

$$\mathsf{HSO}_3^- = \mathsf{H}^+ + \mathsf{SO}_3^{2-} \qquad \qquad \mathsf{K}_{\mathsf{a2}} = \frac{[\mathsf{H}^+][\mathsf{SO}_3^{2-}]}{[\mathsf{HSO}_3^-]} = 6.6 \mathsf{x} 10^{-8}$$

$$HSO_3^- + H_2O = OH^- + H_2SO_3$$
 $K_{b2} = \frac{K_w}{K_{a1}} = 8.13x10^{-13}$

• How do we approach this?

Amphiprotic Species

We need to take a more systematic approach! One starting point is a mass balance relationship called the "proton condition"

proton condition: The concentration of H⁺ is a result of the difference in concentration of the species that liberate H⁺ minus the concentrations of species that consume H⁺

Lets look at the proton condition for our system:

Consume H⁺ Liberate H⁺

$$HSO_{3}^{-} + H^{+} = H_{2}SO_{3} \quad HSO_{3}^{-} = SO_{3}^{2-} + H^{+}$$

$$H_{2}O = H^{+} + OH^{-}$$

So, the proton condition is:

$$[H^+] = [SO_3^{2-}] + [OH^-] - [H_2SO_3]$$

5

Amphiprotic Species

$$[H^+] = [SO_3^{2-}] + [OH^-] - [H_2SO_3]$$

 We can substitute expressions for [SO₃²⁻], [OH-] and [H₂SO₃] from the appropriate equilibrium constant expressions to arrive at an expression in terms of [H+] and [HSO₃-].

$$\left[H^{+} \right] = \frac{K_{a2} \left[HSO_{3}^{-} \right]}{\left[H^{+} \right]} + \frac{K_{w}}{\left[H^{+} \right]} - \frac{\left[H^{+} \right] \left[HSO_{3}^{-} \right]}{K_{a1}}$$

• With the help of the god's of algebra we can come to this:

$$[H^{+}] = \sqrt{\frac{K_{a1}K_{a2}[HSO_{3}^{-}] + K_{a1}K_{w}}{K_{a1} + [HSO_{3}^{-}]}}$$

We still can't solve this completely (we don't know [HSO₃-])....
 What DO we know?

REMEMBER THIS IS CHEMISTRY!

Chemistry Can Be Helpful!

- We know that HSO₃ is acting as both an acid and a base in this case
- 2. Every time an SO₃²⁻ is formed, a H⁺ is liberated. Every time a H₂SO₃ is formed OH⁻ is produced.
- 3. The H+ and OH- can react to reform the original HSO₃-
- 4. Therefore [HSO₃-] will not vary much from original concentration, F.

So, working under this assumption, the equation becomes:

$$\left[H^{+}\right] = \sqrt{\frac{K_{a1}K_{a2}F + K_{a1}K_{w}}{K_{a1} + F}}$$

We know all of these values, if we plug and chug, we discover that $[H^+] = 2.69 \times 10^{-5} M$, with pH = 4.57

Can we make things easier? Maybe!

7

Chemistry Can Be (more) Helpful!

$$[H^{+}] = \sqrt{\frac{K_{a1}K_{a2}F + K_{a1}K_{w}}{K_{a1} + F}}$$

Two considerations:

- 1. If $K_{a2}F >> K_w$, the numerator in the fraction becomes $K_{a1}K_{a2}F$
- 2. If K_{a1} << F, the denominator becomes F

The result of these assumptions is a much simpler equation:

$$\[H^{+}\] = \sqrt{\frac{K_{a1}K_{a2}F}{F}} = \sqrt{K_{a1}K_{a2}}$$

OR:
$$pH = \frac{1}{2} (pK_{a1} + pK_{a2})$$

Using this simplification, our problem becomes: $pH = \frac{1}{2}(1.91 + 7.18) = 4.55$

Handling Polyprotic Acids/Bases (Read text carefully)

As long as K_a's aren't too close (~1000x)

1. Treat fully protonated acid as a weak monoprotic acid

$$K_a = \frac{x^2}{F - x}$$

- 2. Treat fully deprotonated acid as weak monobasic base
- 3. Treat intermediate forms by looking at the K_a's for the surrounding equilibria

$$\left[H^{+}\right] = \sqrt{\frac{K_{ax}K_{ax+1}F + K_{ax}K_{w}}{K_{ax} + F}}$$

Complete systematic approach will always work, but will require more effort.

9

Fraction of Dissociation

$$H_2A = H^+ + HA^ K_{a1} = \frac{[H^+][HA^-]}{[H_2A]}$$
 $HA^- = H^+ + A^ K_{a2} = \frac{[H^+][A^-]}{[HA^-]}$

Calculate α_{H2A} as a function of pH.

$$\alpha_{\mathsf{H2A}}$$
 =

How do we get things in terms of K's and [H+]? Look at equilibrium expressions:

From K_{a1} ; [HA] =

From K_{a2} ; $[A^{2-}] =$

Combine Terms:

Fraction of Dissociation

$$\alpha_{H_2A} = \frac{\left[H_2A\right]}{\left[H_2A\right] + \frac{K_{a1}[H_2A]}{\left[H^+\right]} + \frac{K_{a1}K_{a2}[H_2A]}{\left[H^+\right]^2}}$$

With some cancellation and manipulation:

$$\alpha_{H_2A} = \frac{[H^+]^2}{[H^+]^2 + K_{a1}[H^+] + K_{a1}K_{a2}}$$

We can do the same treatment for HA⁻, and A²⁻.

$$\alpha_{HA^{-}} = \frac{K_{a1}[H^{+}]}{[H^{+}]^{2} + K_{a1}[H^{+}] + K_{a1}K_{a2}} \qquad \alpha_{A^{2^{-}}} = \frac{K_{a1}K_{a2}}{[H^{+}]^{2} + K_{a1}[H^{+}] + K_{a1}K_{a2}}$$

Is there a pattern emerging?

For triprotic acid, denominator becomes: