Spectroscopy in the UV and Visible: Instrumentation

• "Typical" UV-VIS instrument

 Monitor the relative response of the sample signal to the blank

$$Transmittance = T = \frac{P}{P_0} = \frac{S}{B}$$

Spectroscopy in the UV and Visible: Instrumentation

- Components may not (at typically <u>are not</u>) useful for all wavelength ranges.
 - Composition, construction limit components to finite useful wavelength ranges

UV-Vis Sources

- Typically continuum sources
- UV Range: Hydrogen and Deuterium arc lamps
 - Electrical excitation at low pressure (<0.5 torr) , low voltage (~40V DC)
 - Forms molecular excited state that undergoes dissociation and photoemission

$$D_2 + E_e \rightarrow D_2^* \rightarrow D' + D" + photon$$

- Energy of photon depends on energies of D' and D"
- Provides continuum from ~160-380 nm

UV-Vis Sources

- Visible Range: Tungsten Filament Lamps
 - Resistively heated wire "blackbody" radiation
 - Emits from ~350-3000 nm (Fig 6-18)
 - ~15% of radiation falls in the visible @3000K
 - (Also Xe arc lamps 200-1000 nm)

■ FIGURE 88.2 Radiant-power spectrum of a deuterium arc lamp (left) and an incandescent source with a temperature of 4200 K, such as a tungsten filament lamp (right).

UV-Vis Sources

- Emmison Spanning UV-VIS: Xe arc lamps
 - High pressure Xenon gas (several atm)
 - Emit from ~200-1000 nm (Xe line spectra in IR)
 - High voltage initiation, low voltage to maintain plasma
 - Generate significant heat, need external cooling

http://zeiss-campus.magnet.fsu.edu/articles/lightsources/images/xenonlampsfigure1.jpg

Line Sources in the UV and Vis

- Hollow Cathode Lamp
 - Cathode is coated with atom of interest
 - Tube is filled with Ar or Ne
 - High voltage ionizes gas, charged ions are accelerated toward electrodes
 - Produces sputtering of atoms (ground and excited)
 - · Excited atoms emit light at atomic lines
 - Design of HCL results in redeposition of metal atoms onto electrodes - recycling
 - Need to avoid excessively high potentials
 - Line broadening (Doppler)
 - Self-absorption
 - Need separate lamp for each element

Figure 9-11 Schematic cross section of a hollow cathode lamp.

Wavelength Dispersion and Selection

- Why disperse the beam at all?
- Why disperse prior to sample?
 - Decomposition
 - Fluorescence
- See http://www.horiba.com/us/en/scientific/products/optics-tutorial/ for a great online optics reference.

Wavelength Dispersion and Selection

- Most instruments use a <u>monochromator</u> to separate light form the source into discrete wavelength segments
- Components:
 - Entrance slit
 - Collimating/focusing device mirror or lens, nonideal
 - Dispersing device -filter, grating or prism
 - Collimating/focusing device mirror or lens
 - Exit slit

Figure 7-16 Two types of monochromators (a) Ozerney-Turner grating monochromator and (b) Bunsen prism monochromator. (In

Wavelength Dispersion and Selection

- Why slits?
- Device disperses wavelengths in space. Quantified by:
 - Linear Dispersion, D = $dy/d\lambda$ and
 - Reciprocal Linear Dispersion, D⁻¹ = 1/D

 By scanning the dispersed beam across a slit, a small fraction of wavelengths are allowed to pass to the sample.

Wavelength Dispersion and Selection

- How much of the beam is allowed to "fit"?
 - Ideally, exit and entrance slits are the same size
 - Dispersing element produces slit-sized images of portions of the beam
 - These slit-sized images are passed across the exit slit. What is the response?
 - Bandwidth = wD⁻¹
 - · Size of spectral slice
 - Impact on spectral detail

Optical Elements and Wavelength Dispersion

- Optical components are not ideal
 - Lenses: Chromatic aberration because refractive index changes with wavelength
 - · focal length changes with wavelength
 - Mirrors: Reflective losses. Lenses and inefficiencies in mirrors contribute to ~4% loss per element.
- · Dispersive Elements: Filters
 - Construction determines what fixed range of wavelengths will be allowed to pass.
 - Interference Filters:
 - "sandwich" containing reflective material and dielectric layer.
 - Only wavelengths that result in in-phase reflections: Depends on thickness and dielectric
 - Absorption Filters:
 - "colored" plates
 - · Light that is not absorbed by the filter is transmitted
 - · Often used in combination

12

Wavelength Dispersion: Gratings

- Reflection Gratings: Optically flat reflective surface with series of parallel groves of equal spacing. (60- 6000 grooves/mm)
 - Ruled vs. Holographic

- Consider a monochromatic wavefront:
 - Points A and B have same wavelength, frequency, velocity...
 - Initially wavefront contains coincident light: Constructive interference
 - In order for constructive interference to result after grating, A and B must travel a fixed number of wavelengths $(n\lambda)$
 - Otherwise destructive interference
 - Can solve geometrically: Grating Equation

 $n\lambda = d(\sin i + \sin r)$

Wavelength Dispersion: Gratings

- See an overlap of orders at a given i and r
- Example: 1500 line/mm grating, i = 12.0°, r = -30.0°
- Characteristics
 - Angular Dispersion: wavelength dependence of reflection
 - Linear Dispersion: "spread" in wavelength along focal plane
 - Resolving Power: ability to separate wavelengths

14

Wavelength Dispersion: Prisms

- Based on the fact that refractive index is wavelength dependent
- When light crosses the interface between materials of different η , it is "bent"

- Snell's Law: $\eta_1 \sin \theta_1 = \eta_2 \sin \theta_2$
- For prisms, there are two interfaces to consider.
- Angles of refraction depend on refractive index and construction of prism

• Since each λ "sees" a different η , varying angles result

Monochromator Output

 What happens as a band of wavelengths moves across slit?

• Bandpass, Bandwidth, Effective Bandwidth

Sample Considerations

- Several possible fates for photon
 - Reflection
 - Scattering
 - Absorption
- Choose cell and sample composition carefully.
- "Match"

18

Detectors for UV-VIS

- Photon Transducers: Covert photon energy to electrical signal (current, voltage, etc.)
- Detectors based on photoelectric effect: Phototubes, Photomultiplier tubes

Phototube:

- Incident photon causes release of an electron
- Photocurrent ∞ P_{light}
- Not best for low-light scenarios

Figure 7-27 A phototube and accessory circuit. The photocurrent induced by the radiation causes a potential drop across *R*, which is then amplified to drive a meter or recorder.

Detectors for UV-VIS

• Photomultiplier:

- Ejected photoelectron strikes *dynode*, secondary e⁻ released
- Voltage accelerates e⁻ to next dynode and so on
 - · big voltage divider
- Result is large charge packet hitting anode
 - · High Gain

Detectors for UV-VIS

- **Semiconductor-based detectors**
 - Photodiodes, Photodiode arrays, CCD, CID
- **Photodiodes and Photodiode Arrays:**
 - Reverse biased junction
 - Photons produce e⁻- hole pairs → current

 - Current ∞ P_{light}
 less sensitive than PMTs
 - Photodiode Arrays: PDA
 - Assembly of individual photodiodes on a chip
 - · Each diode can be addressed individually
 - Experiment is set up so that monochromator disperses light across PDA, with a small # of diodes per wavelength
 - allow simultaneous collection of all wavelengths

Detectors for UV-VIS

- Charge transfer devices (CCD, CID)
 - two- or three-dimensional arrays
 - allow integration of accumulated charge better sensitivity

Instrument Assemblies

- Single wavelength: Photometers (filter-based)
- Multiple Wavelength Capability, Two classes: Single- (scanning) and Multichannel

 Single channel: defined by how reference and sample signals are taken and compared.

Advantages and disadvantages of single vs. double beam

22

Instrument Assemblies

- Multichannel Devices: Array-based (typically)
 - Collect P for all wavelengths simultaneously
 - Need single detector for each wavelength Array!

- No mechanical movement of monochromator
- Software stores blank response.
 - Digitally ratioed to sample response to produce spectrum.
- Advantages
 - Fast response
 - Fewer mechanical parts
- Disadvantages
 - Wavelength resolution depends on monochromator and size of array (physical size and # of elements)
 - \$\$\$
- Our instruments:
 - Milton Roy (PDA), Ocean Optics (CCD)
 - Cary 50 (Scanning)

