Electronics: Why do we care?
TwO main reasons

e Every instrumental measurement involves a transduction
step that converts a chemical/physical response into an

electrical signal.
— Need to ensure that signal is a good reflection of the response

 Many instruments are now interfaced with computers

— Need to ensure that analog and digital components
communicate effectively



Signal Transduction: Data Domains

e |nformation can be “stored” or communicated Iin several

ways

Electrical domains

Figure 1-2 Data domains map. The upper (shaded) half
of the map comprises nonelectrical domains. The bottom
half is made up of electrical domains. Note that the digital
domain spans both electrical and nonelectrical domains.
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Figure 1-3 A block diagram of a fluorometer showing (a) a general diagram of the instrument,
(b) a diagrammatic representation of the flow of information through various data domains in
the instrument, and (c) the rules governing the data domain transformations during the mea-
surement process.



Golden Rules of Circuits: Dust off the physics!

e Ohm’s Law:

— Voltage drop across a resistor is proportional to the flow of
electrons (current) through the resistor and the magnitude of the
resistance

E=IR

Kirchoff's Laws:
— All of the currents in and out of a node must sum to zero.
— The voltages around a loop must sum to zero

Power Dissipation:

— The power dissipated in a circuit is related to the current and the
resistance of the circuit

P=IE=I°R



Basic Circuits: Passive Components

 Two main types: Resistors and Capacitors
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e Resistance In circuits
— Series: Parallel:
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Capacitance: Charge Storage

o Store charge by applying potential (Voltage) across a dielectric.
C = Q/V (C has units of Farads)

« Capacitors are affected by changing currents and voltages

dQ dv
IN_1-C
dt dt

« Capacitors in series and parallel:
— Series:

— Parallel;



Important Passive Component Combinations

« Voltage Divider




Important Passive Component Combinations

e Series RC Circuit




RC Filters

* Filters take advantage of the different time dependencies
of resistors and capacitors
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e Lowpass: R=10kQ, C=0.1uF
e Highpass: R=1MQ,C=1puF




Semiconductor Devices

Diodes
— greater conductivity in one direction
— Made by coupling n-type and p-type semiconductors
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— Combinations of diode junctions
— Useful for switching and amplification
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Fig. 3-7. Symbol (a) of a rectifier diode. The diode is
shown forward biased in (b) and reverse biased in (c).
The forward resistance Ry is always much less than
the backward resistance Rp.
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Power Supplies

e Convert AC to DC to operate semiconductor devices

e Two functions
— Remove oscillation in voltage

— Establish constant voltage ' m
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Operational Amplifiers

 Solid-state device
— combination of transistors, diodes, resistors, capacitors on a chip
— many, many applications!

e General Characteristics:
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— All potentials are relative to circuit common

— Response: v,=A(v, -V)

— Ideal characteristics:
« Large open loop gain (A)
* High input impedance: no current through the op-amp!
* Low output impedance:
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Figure 3-3  Circult design of a typical operational amplifier.  (Comrtery of Mathonal Semboon-

ductor Corporation)

Figure 3-2 Symbols for opera-
tional amplifiers. More detail than
usual is provided in (a). Note that
the two input potentials v_ and v
as well as the output potential are
measured with respect to the circuit
common, which is usually at or near
earth ground potential. (b) The usual
way of representing an operational
amplifier in circuit diagrams.

(c) Representation of typical com-
mercial 8-pin operational amplifier.
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Op-Amp Circuit Analysis

« Remember A is huge (104 to 10° or larger)
 AND no current through the op-amp!
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Op-Amp Circuit Analysis, Il




Op-Amp Possibilities (only a few)
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Figure 3-14 Mathematical operations with operational amplifiers.
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(d) Differentiation



Practical Considerations

e

Ll

« Common wiring pattern
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offset
trim
+PS

Inverting input O—E
Noninverting input 0~E ___’———0 Qutput

|2

o]

OP-08

— Power supply connections

(+/- 15 VDC)
— “Trim” connections
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 Response time considerations:
— Slew Rate, Rise Time and frequency
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Communications between an Instrument and a
Computer: Analog Regime to Digital Regime

* In order for information to be transferred an analog to
digital conversion must occur.
— Analog: continuous in magnitude and time
— Digital: discontinuous, finite number of values, “quantized”

e Centered on binary logic
— only two states: “on” and “off”
— Example: 8-bit binary number: 10010110

— Least Significant Bit (LSB):



Counting with Flip-Flop Logic

* Flip-flop: Only changes output when the input changes
from 1 to O (only one direction)
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A/D and D/A Conversion

e From instrument to computer:
A/D Conversion
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sion process, (b) block diagram of the ADC.

Figure 4-8 A staircase analog-
to-digital converter (ADC).



A/D and D/A Conversion

From computer to instrument:
D/A Conversion
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Figure 4-7 A 4-bit digital-to-analog (DAC) converter.
Here A, B, C, and D are +5 V for logic state 1 and are 0 V
for logic state 0.

Resolution Considerations

— What if we need to encode (or decode) a £2V signal with
resolution of ImV? How many bits do we need?



Considerations of Analog«Digital Conversion

« Sampling Considerations: Need the digital signal to be a good
representation of real life.

— Counting
— Timing
— A/D or D/A conversion

° Allasmg @ /‘\ f\ [\ A AIEA Figure 2-28. (a) Aliasing of 175
Hzto25Hzina 175-Hz sine wave
\/ \_f \J/ \,/ \/ \/ is shown. (b) Samples taken at 200
Hz. When the sample points are
' ' ‘ ' ‘, ‘, * connected, the 25-Hz alias is

revealed.
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* Rule of thumb: Signals should be sampled at a rate at least twice
the highest frequency component of the signal. (Nyquist Theorem)



