Fundamentals of Capillary Electrophoresis

- Separation is driven by electric field
 - Combination of effects
- Several modes of operation
 - Depends on primarily buffer composition.

Flow through capillary is result of superposition two processes:

- **Electrophoretic Flow**
 - Cations are drawn toward cathode (-)
 - Anions are drawn toward anode (+)
 - Neutrals are unaffected
 - Mobility is determined by mass to charge ratio
 - Contributes through velocity and drag

- **Electroosmotic Flow**
 - Because cations are highly solvated, solvent is also drug toward cathode
 - Since solvation is a dynamic process, the result is general flow of all components (cations, anions, and neutrals) to toward cathode
 - $v_{\text{electro}} > v_{\text{electrophor}}$
 - Electrical double-layer causes cations to congregate near walls
 - Flat flow profile
Separation Efficiency in CE

- Migration velocity: Depends on voltage and mobility
 \[v = (\mu_e + \mu_{eo})E = (\mu_e + \mu_{eo})V/L \]

- Electrophoretic mobility may be positive (cations), zero (neutrals), or negative (anions).

- Electroosmotic mobility is generally positive
 - Everything is being drawn to the cathode
 - Can be reversed by altering surface chemistry of the capillary
 - add cationic surfactant
 - Can be minimized by "neutralizing" the surface of the capillary
 - convert charged silanol groups to neutrals (like Si(CH₃)₃Cl)

- Plate Height:
 \[N = \frac{(\mu_e + \mu_{eo})V}{2D} \]
 - Independent of capillary length
 - High potential is better...ideally
 - fast separations
 - can lead to heating in capillary
 - accelerates diffusion \(\rightarrow \) increased broadening (not terrible)

Basic CE Instrument Components

- Capillary: \~50-75 μm i.d., tens of cm long
 - Care and feeding of capillaries is critical

- High voltage power supply: kV potentials
 - Velocity \(\propto \) voltage

- Buffer
 - Need conductive solution

- Potential challenges
 - Particulates
 - Poor conductivity – heating

- Injection: Small capillaries require small injection volumes (nL to pL)
 - Electrokinetic Injection
 - non-uniform sampling due to mobility
 - Pressure Injection
 - uniform sampling
Basic CE Instrument Components

• **Detection:** Similar to LC, but smaller sample so sensitivity is an issue.
 – Mobility also plays a role in peakshape since materials elute at different rates (different than LC)
 – Indirect detection is becoming more common

<table>
<thead>
<tr>
<th>Type of Detector</th>
<th>Representative Detection Limit (attomoles detected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrometry</td>
<td>1–1000</td>
</tr>
<tr>
<td>Absorption</td>
<td>1–1000</td>
</tr>
<tr>
<td>Fluorescence</td>
<td>1–0.01</td>
</tr>
<tr>
<td>Thermal lens</td>
<td>10</td>
</tr>
<tr>
<td>Raman</td>
<td>1000</td>
</tr>
<tr>
<td>Chemiluminescence</td>
<td>1–0.0001</td>
</tr>
<tr>
<td>Mass spectrometry</td>
<td>1–0.01</td>
</tr>
<tr>
<td>Electrochemical</td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td>100</td>
</tr>
<tr>
<td>Potentiometry</td>
<td>1</td>
</tr>
<tr>
<td>Amperometry</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Electrophoresis vs. Electrochromatography

• In CE there are still plenty of materials that are difficult to separate
 – Try to improve separation by modifying buffer composition or separation voltage

• **Zone Electrophoresis (CZE):** single composition buffer, “classic” CE

• **Isotachophoresis:** two buffer compositions. Analytes distribute themselves between the extremes

• **Isoelectric Focusing:** Buffer composition changes throughout capillary. Amphiprotic materials migrate toward their isoelectric point (pI).
 – At pI, amphiprotic material is “uncharged”
Electrophoresis vs. Electrochromatography

- **Electrochromatography**: Hybrid technique
 - Two-phase separation driven by electroosmotic flow
 - Separation is a result of partitioning of analytes between the two phases (chromatography!)

- How to introduce second phase?
 - Packed capillaries - fairly uncommon, tough to prepare
 - Pseudo-stationary phase - component present in buffer that can allow partitioning of analyte
 - easier to do, much more flexible

- **Micellar Electrokinetic Chromatography (MECC)**
 - Surfactant is added to buffer (SDS, etc)
 - If surfactant concentration is appropriate, micelles form

 ![Exceed CMC](image)

 - Nonpolar interior of micelle acts as second phase
 - analytes partition into the phase on the basis of their distribution coefficients (K)
 - Micelles themselves have electrophoretic and electroosmotic mobility (negatively charged)
 - More efficient than HPLC (more plates)
 - Easy to change micellar phase!

- Chiral separations: chiral pseudo-stationary phase

MS Detection for CE

- **CE-MS**

 - CE is probably best suited for coupling to MS
 - low volume flow rates

 - ESI is most common
 - “End” of the capillary is metalized
 - Allows application of potential for both separation and ionization
 - E(injection)>E(ionization)>ground