Square 1: Concentration Units and Measurements

Things to do:

Review SI units

Review metric prefixes:

Know at least mega- down to atto-

A word to the wise when doing calculations: KEEP TRACK OF UNITS!!

Remember dimensional analysis

If your units don't work, there's no way the result can be correct!

Concentration Units Based on Moles

Molarity, M

Molarity vs Formality

Molality, m

Molar Concentrations

Example: How many grams of MgF₂ are needed to make 250.0 mL of a 0.150 M MgF₂ solution?

How about 250.0 mL of 0.150 M F⁻ solution?

3

Concentrations Based on Mass or Volume Ratios

Percents

- weight %, (% w/w)
- volume %, (% v/v)
- % weight per volume, (% w/v)

For very dilute samples:

- · parts per million (ppm)
- parts per billion (ppb)

Concentrations Based on Mass or Volume Ratios

Example: What is the mercury concentration in ppm of a 12.0 μ M mercury solution?

5

One More Example

Example: Most contact lens saline solutions are 5.0% sodium chloride. Calculate the molarity of these sodium chloride solutions. The density of the solution is 1.4 g/mL.

Dilution

Often you will start with a solution of a given concentration and need to prepare a solution of lesser concentration. How do you determine the volume that must be diluted to prepare this solution?

$$M_{conc}V_{conc} = M_{dil}V_{dil}$$

Look at the units:

"Dilution by mass" works and may be more convenient!

-

Dilution

Example: How many milliliters of concentrated (18.0 M) sulfuric acid must be diluted to 500.0 mL to make a 0.100 M solution?

Taking Advantage of Stoichiometry:

Use stoichiometric relations to calculate an unknown quantity based on the quantity of a product produced or reactant consumed on a reaction.

$$A + B \rightarrow C + D$$

- · Gravimetric Methods
- Titrimetric (Volumetric) Methods