Electroanalytical Chemistry: Fundamentals

Investigations based on electron-transfer reactions (redox)

Oxidation:

Reduction:

We describe the tendency for a reaction to occur as "Potential"

- · Thermodynamics
- Related to Free Energy (ΔG or ΔG°) (easier to measure!!)

Classes of electroanalytical techniques:

- · Controlled Current:
- · Controlled Potential:

1

Let's Look at a Reaction

What happened?

From a thermodynamics standpoint, what can we say?

What does this say about the oxidizing ability of Cu^{2+} compared to Zn° ?

2

Cu/Zn Reaction Let's write the oxidation and reduction reactions: Oxidation: Reduction: What if we split the ½ reactions? What happens when we close the switch?

Quantifying Potential Difference: Standard Reduction Potential

- · Tabulated for unit activity
- Convention is to write things as a reduction
- · Oxidizing/Reducing Agents
- Remember: $\Delta G^{\circ} = -nFE^{\circ}$

How do we determine free energy changes for a reaction?

Reaction	Eº (V)
$F_2(g) + 2e^- = 2 F^-$	+2.890
$O_3(g) + 2H^+ + 2e^- = O_2(g) + H_2O$	+2.075
$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$	+1.507
$Ag^+ + e^- = Ag(s)$	+0.799
$Cu^{2+} + 2e^{-} = Cu(s)$	+0.339
$AgCI + e^{-} = Ag(s) + CI^{-}$	+0.222
$2H^+ + 2e^- = H_2(g)$	0.000
$Cd^{2+} + 2e^{-} = Cd(s)$	-0.402
$Zn^{2+} + 2e^{-} = Zn(s)$	-0.762
$K^{+} + e^{-} = K(s)$	-2.936
$Li^+ + e^- = Li(s)$	-3.040

5

Quantifying Potential Difference

Rxn 1 (Cathode)	$Cu^{2+} + 2e^{-} = Cu(s)$	E° = +0.339
Rxn 2 (Anode)	$Zn^{2+} + 2e^{-} = Zn(s)$	Eº = -0.762 V
Net Rxn		E° = ??

General Expression: E^o_{cell} = Cell shorthand notation:

| =

| =

Quantifying Potential Difference

Unfortunately, ΔG° and E° are for standard conditions, kinda rare! How do we deal with nonstandard conditions?

$$\Delta G = \Delta G^{\circ} + RTInQ$$

But, $\Delta G^{\circ} = -nFE^{\circ}$

7

Nernst Equation

$$E = E^0 - \frac{0.05916V}{n} log Q$$

This relationship (Nernst Eqn.) applies to cell reactions and to half reactions!

So, what if $[Zn^{2+}] = 0.100 \text{ M}$ and $[Cu^{2+}] = 0.050 \text{ M}$?

8

Measuring Potentials

All potentials are determined or tabulated relative to some reference state. For standard reduction potentials, reference state is the "Standard Hydrogen Electrode"

- E° defined as 0.000 V
- H^+ (aq) + e^- = $\frac{1}{2}$ $H_2(g)$
- S.H.E. is the anode
- Pt | H₂, H⁺ | cathode
- Sometimes called "Normal Hydrogen Electrode" (NHE)

S.H.E. isn't very practical, so we use alternatives:

• Silver/Silver Chloride:

Ag | AgCl | Cl⁻ | cathode $E^{\circ} = +0.197V$ (sat'd KCl)

• Saturated Calomel (SCE):

Pt | Hg | Hg₂Cl₂ | Cl | cathode $E^{\circ} = +0.241V$ (sat'd KCl)

)