Activity

In our earlier discussion of equilibrium constant expressions, we defined K for an equilibrium as follows:

If aA + bB = cC + dD, then

$$\frac{(a_C)^c (a_D)^d}{(a_A)^a (a_B)^b} = K$$

where K is the equilibrium constant, and a_X is the *activity* of X and described by the activity coefficient γ_X and [X]:

 $a_X = \gamma_X[X]$

We said that typically we setup experimental parameters such that γ_X is very close to one, close enough to say that activity and concentration are equal.

How can we get away with this? More importantly, <u>when</u> can we get away with this? Lets look at γ_x .

5

In situations where γ is not close to unity (1), we have to account for activities in our calculations.

TABLE 7.1 Activity coefficients for advances solutions at 25%							
TABLE 7-1 Activity coefficients for aqueous solutions at 25 C	3						
Ion	Ion	Ionic strength (µ, M)					
	(a, pm)	0.001	0.005	0.01	0.05	0.1	
Charge = +1			Activit	v coefficie	ient (~)		
H+	900	0.967	0.933	0.914	0.86	0.83	
(C.H.)-CHCOT (C.H.)-N ⁺	800	0.966	0.931	0.912	0.85	0.82	
(0,N).C.H.O" (C.H.).NH ⁺ CH.OC.H.CO"	700	0.965	0.930	0.909	0.845	0.81	
Li*, C4H2C07, H0C4H2C07, CIC4H2C07, C4H2CH2C07,							
CH ₂ =CHCH ₂ CO ₇ , (CH ₁) ₂ CHCH ₂ CO ₇ , (CH ₄ CH ₂) ₄ N ⁺ , (C ₄ H ₂) ₂ NH ₂ ⁺	600	0.965	0.929	0.907	0.835	0.80	
Cl ₂ CHCO ₂ ⁻ , Cl ₃ CCO ₂ ⁻ , (CH ₃ CH ₂) ₃ NH ⁺ , (C ₃ H ₇)NH ₃ ⁺	500	0.964	0.928	0.904	0.83	0.79	
Na ⁺ , CdCl ⁺ , ClO ₂ ⁻ , IO ₃ ⁻ , HcO ₃ ⁻ , H ₂ PO ₄ ⁻ , HSO ₃ ⁻ , H ₂ AsO ₄ ⁻ , Co(NH ₂) ₄ (NO ₂) ⁺ , CH ₂ CO ₇ ⁻ , ClCH ₂ CO ₇ ⁻ , (CH ₂) ₂ N ⁺ .							
(CH ₃ CH ₂) ₂ NH ⁺ ₂ , H ₂ NCH ₂ CO ⁻ ₂	450	0.964	0.928	0.902	0.82	0.775	
H ₃ NCH ₂ CO ₂ H, (CH ₃) ₃ NH, CH ₃ CH ₂ NH ₃ *	400	0.964	0.927	0.901	0.815	0.77	
OH-, F-, SCN-, OCN-, HS-, ClO3, ClO4, BrO3, IO4, MnO4,							
HCO ₂ ⁻ , H ₂ citrate ⁻ , CH ₃ NH ₃ ⁺ , (CH ₃) ₂ NH ₂ ⁺	350	0.964	0.926	0.900	0.81	0.76	
K ⁺ , Cl ⁻ , Br ⁻ , I ⁻ , CN ⁻ , NO ₂ ⁻ , NO ₃ ⁻	300	0.964	0.925	0.899	0.805	0.755	
Rb ⁺ , Cs ⁺ , NH ₄ ⁺ , Tl ⁺ , Ag ⁺	250	0.964	0.924	0.898	0.80	0.75	
$Charge = \pm 2$		Activity coefficient (\u03c4)					
Mg^{2+}, Be^{2+}	800	0.872	0.755	0.69	0.52	0.45	
CH ₂ (CH ₂ CH ₂ CO ₂ ⁻) ₂ , (CH ₂ CH ₂ CH ₂ CO ₂ ⁻) ₂	700	0.872	0.755	0.685	0.50	0.425	
$\begin{array}{l} Ca^{2+}, Cu^{2+}, Zn^{2+}, Sn^{2+}, Mn^{2+}, Fe^{2+}, Ni^{2+}, Co^{2+}, C_{6}H_{4}(CO_{2}^{-})_{2}, \\ H_{2}C(CH_{2}CO_{2}^{-})_{2}, (CH_{2}CH_{2}CO_{2}^{-})_{2} \end{array}$	600	0.870	0.749	0.675	0.485	0.405	
$\rm Sr^{2+}, Ba^{2+}, Cd^{2+}, Hg^{2+}, S^{2-}, S_2O_4^{2-}, WO_4^{2-}, H_2C(CO_2^-)_2, (CH_2CO_2^-)_2, (CHOHCO_2^-)_2$	500	0.868	0.744	0.67	0.465	0.38	
Pb ^{4*} , CO ₃ ^{4*} , SO ₃ ^{4*} , MoO ₄ ^{4*} , Co(NH ₃) ₅ Cl ^{4*} , Fe(CN) ₅ NO ^{2*} , C ₂ O ₄ ^{2*} ,	100						
Heitrate"	450	0.867	0.742	0.665	0.455	0.37	
Hg2 , SU4 , S2U3 , S2U6 , S2U8 , SeU4 , CrU4 , HPO4	400	0.867	0.740	0.660	0.445	0.355	
$Charge = \pm 3$		Activity coefficient (γ)					
Al ⁻ , Fe ⁻ , Cr ⁻ , Sc ⁻ , Y ⁻ , In ⁻ , lanthanides ^a	900	0.738	0.54	0.445	0.245	0.18	
citrate"	500	0.728	0.51	0.405	0.18	0.113	
PO_4 , $PO(NH_3)_6$, $CO(NH_3)_6$, $CO(NH_3)_6$, $CO(NH_3)_3H_2O^2$	400	0.725	0.505	0.393	0.16	0.095	
Charge = ± 4		Activity coefficient (7)					
Th ⁺ , Zr ⁺ , Ce ⁺ , Sn ⁺	1 100	0.588	0.35	0.255	0.10	0.065	

