Complete the following problems. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units.

1. The initial rate for the reaction $A + B \rightarrow C + D$ is determined for different initial conditions, with the results below. Determine the rate law and the value of the rate constant for the reaction. (9 points)

Expt.	[A], M	[B], M	Initial Rate, Ms ⁻¹
1	0.185	0.133	3.35 x 10 ⁻⁴
2	0.185	0.266	1.35 x 10 ⁻³
3	0.370	0.133	6.75 x 10 ⁻⁴
4	0.370	0.266	2.70 x 10 ⁻³

2. The half-life (denoted $t_{1/2}$) is the time it takes for the concentration of a reactant to be decreased to half of its original value. Mathematically, after one half-life [R] = $\frac{1}{2}$ [R]₀. Consider the integrated rate law for a first order reaction. If the half-life of the reaction is 949 seconds, what is the rate constant for the reaction (with appropriate units)? (8 points)

3. If even a tiny spark is introduced into a mixture of $H_2(g)$ and $O_2(g)$, a highly explosive exothermic reaction occurs. Without the spark, the mixture remains unreacted indefinitely. Explain this observation in terms of the reaction thermodynamics and kinetics. A reaction coordinate diagram may be useful.(8 points)

Possibly Useful Information

-	,	
R = $0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1}$ R = $8.314 \text{ J mol}^{-1} \text{ K}^{-1}$	$\ln k = -\left(\frac{E_a}{R}\right)\left(\frac{1}{T}\right) + \ln A$	$k = Ae^{-E_{a/RT}}$
rate = k[A] ⁰	rate = k[A] ¹	rate = k[A] ²
$[A]_t = -kt + [A]_0$	$ln[A]_t = -kt + ln[A]_0$	$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$

1																	18
1A																	8A
1 H	2											13	14	15	16	17	2 He
1.00794	2A											3A	4A	5A	6A	7A	4.00260
3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
22.9898	24.3050	3B	4B	5B	6B	7B		_8B_		1B	2B	26.9815	28.0855	30.9738	32.066	35.4527	39.948
19 K	Ca	21 Sc	22 Ti	23 V	24 Cr	25 M n	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9381	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.818	118.710	121.757	127.60	126.904	131.29
55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
132.905	137.327	138.906	178.49	180.948	183.84	186.207	190.23	192.22	195.08	196.967	200.59	204.383	207.2	208.980	(209)	(210)	(222)
87 Fr	88 Ra	*89 *Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg							
(223)	226.025	227.028	(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)							

*Lanthanide series	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158,925	162.50	164.930	167.26	168.934	173.04	174.967
[†] Actinide series	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)