Complete the following problems. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units.

1. The initial rate for the reaction $A + B \rightarrow C + D$ is determined for different initial conditions, with the results below. Determine the rate law and the value of the rate constant for the reaction. (9 points)

Expt.	[A], M	[B], M	Initial Rate, Ms ⁻¹
1	0.185	0.133	3.35 x 10 ⁻⁴
2	0.185	0.266	1.35 x 10 ⁻³
3	0.370	0.133	6.75 x 10 ⁻⁴
4	0.370	0.266	2.70 x 10 ⁻³

From Expt. 1 to Expt. 3, [A] is doubled, while [B] remains fixed. This causes the rate to increases

by a factor of
$$\frac{6.75 \times 10^{-4} \text{ M s}^{-1}}{3.35 \times 10^{-4} \text{ M s}^{-1}} = 2.01 \approx 2$$
.

Thus, the reaction is first-order with respect to A.

From Expt. 1 to Expt. 2, [B] doubles, while [A] remains fixed. This causes the rate to

increases by a factor of
$$\frac{1.35 \times 10^{-3} \text{ M s}^{-1}}{3.35 \times 10^{-4} \text{ M s}^{-1}} = 4.03 \approx 4$$
 .

Thus, the reaction is second-order with respect to B.

Overall reaction order = order with respect to A + order with respect to B = 1 + 2 = 3. The reaction is third-order overall.

Rate =
$$3.35 \times 10^{-4} \text{ M s}^{-1} = k(0.185 \text{ M})(0.133 \text{ M})^2$$

$$k = \frac{3.35 \times 10^{-4} \text{ M s}^{-1}}{(0.185 \text{ M})(0.133 \text{ M})^2} = 0.102 \text{ M}^{-2} \text{ s}^{-1}$$

2. The half-life (denoted $t_{1/2}$) is the time it takes for the concentration of a reactant to be decreased to half of its original value. Mathematically, after one half-life [R] = $\frac{1}{2}$ [R]₀. Consider the integrated rate law for a first order reaction. If the half-life of the reaction is 949 seconds, what is the rate constant for the reaction (with appropriate units)? (8 points)

The integrated rate law for a first order reaction is $ln[R]_t = -kt + ln[R]_0$. From the problem, we are told that at t=949 seconds, the $[R]_t = \frac{1}{2}[R]_0$. Inserting these values into the rate law:

$$ln(0.5[R]_0) = -k(949 s) + ln[R]_0$$

We do not know [R]₀ explicitly, but we can use the rules of logarithms to simplify the expression:

$$ln(0.5) + ln[R]_0 = -k(949 s) + ln[R]_0$$

Subtracting In[R]₀ from both sides:

$$ln(0.5) = -k(949 s)$$

Rearranging:

$$k = -(ln(0.5))/(949 s) = 7.30 x 10^{-4} s^{-1}$$

3. If even a tiny spark is introduced into a mixture of H₂(g) and O₂(g), a highly explosive exothermic reaction occurs. Without the spark, the mixture remains unreacted indefinitely. Explain this observation in terms of the reaction thermodynamics and kinetics. A reaction coordinate diagram may be useful.(8 points)

The activation energy for the reaction of hydrogen with oxygen is quite high, too high, in fact, to be supplied by the energy ordinarily available in a mixture of the two gases at ambient temperatures. However, the spark supplies a suitably concentrated form of energy to overcome the activation barrier and initiate the reaction of at least a few molecules. Since the reaction is highly exothermic, the reaction of these first few molecules supplies sufficient energy for yet other molecules to react and the reaction proceeds to completion or to the elimination of the limiting reactant.

Possibly	/ Useful	Inform	ation

	occiony occide information	••
R = 0.08206 L atm mol ⁻¹ K ⁻¹ R = 8.314 J mol ⁻¹ K ⁻¹	$\ln k = -\left(\frac{E_a}{R}\right)\left(\frac{1}{T}\right) + \ln A$	$k = Ae^{-E_{a/RT}}$
rate = k[A] ⁰	rate = k[A] ¹	rate = k[A] ²
$[A]_t = -kt + [A]_0$	$ln[A]_t = -kt + ln[A]_0$	$\frac{1}{\left[A\right]_{t}} = kt + \frac{1}{\left[A\right]_{0}}$

1																	18
1A																	8A
1 H	2											13	14	15	16	17	2 He
1.00794	2A											3A	4A	5A	6A	7A	4.00260
3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
11 Na	12 Mg	3	4 4B	5 5B	6	7	8	9 - op -	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
22.9898	24.3050	3B 21	4B	5B	6B	7B	26	8B -	28	1B	2B	26.9815	28.0855	30.9738	32.066	35.4527 35	39.948
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni Ni	Cu	Zn	Ga	Ge	As	Se	Br	36 Kr
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9381	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
37 D1	38	39	40	41	42	43	44 D	45 D1	46 D.J	47	48	49	50	51 Cl-	52 T-	53	54 V
Rb 85.4678	Sr 87.62	Y 88.9059	Zr 91.224	Nb 92.9064	Mo 95.94	Tc (98)	Ru 101.07	Rh 102.906	Pd 106.42	Ag 107.868	Cd 112.411	In 114.818	Sn 118.710	Sb 121.757	Te 127.60	I 126.904	Xe 131.29
55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 A u	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
132.905 87	137.327 88	138.906	178.49	180.948	183.84	186.207 107	190.23 108	192.22	195.08 110	196.967 111	200.59	204.383	207.2	208.980	(209)	(210)	(222)
Fr	Ra	†Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	226.025	227.028	(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)							

*Lanthanide series	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
[†] Actinide series	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Copyright © 2007 Pearson Prentice Hall, Inc.