Complete the following problems. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units.

 A 0.75 g sample of KCl is added to 35.0 g H₂O in a foam cup and stirred until it dissolves. The temperature of the solution drops from 24.8 to 23.6°C. What is the heat of solution of KCl in units of kilojoules per mole of KCl. Assume a heat capacity of water of 4.184 J/gK.

This was problem 7-39.

We assume that the specific heat of the solution is $4.18~J~g^{-1}~^{\circ}C^{-1}$. The enthalpy change in kJ/mol KCl is obtained by the heat absorbed per gram KCl.

$$\Delta H = -\frac{(0.75 + 35.0) \text{g} \frac{4.18 \text{J}}{\text{g}^{\circ} \text{C}} (23.6 - 24.8)^{\circ} \text{C}}{0.75 \text{ g KCl}} \times \frac{1 \text{ kJ}}{1000 \text{ J}} \times \frac{74.55 \text{ g KCl}}{1 \text{ mol KCl}} = +18 \text{ kJ / mol}$$

2. The following reaction is an important source of propane.

$$C_3H_4(g)+2H_2(g)\to C_3H_8(g)$$

Use the information below to determine the ΔH^{o} of reaction for this reaction.

Reaction	∆H° (kJ)
$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(\ell)$	-285.8
$C_3H_4(g) + 4O_2(g) \rightarrow 3CO_2(g) + 2H_2O(\ell)$	-1937
$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(\ell)$	-2219.1

This is problem 7-69

$2[H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)]$	2[-285.8]
$C_3H_4(g) + 4O_2(g) \rightarrow 3CO_2(g) + 2H_2O(l)$	-1937
$-1[C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I)]$	-1[-2219.1]

After "adding" the reactions:

$$H_2 + O_2 + C_3H_4 + 4O_2 + 3CO_2 + 4H_2O \rightarrow 2H_2O + 3CO_2 + 2H_2O + C_3H_8 + 5O_2 + 2H_2O + C_3H_8 + 5O_2 + 2H_2O +$$

Therefore the $DH^{o}_{rxn} = \{(2[-285.8]) + (-1937) + (-1[-2219.1])\}kJ = -289.5 kJ = -290 kJ$

3. Limestone (solid $CaCO_3$) can be decomposed through heating into solid calcium oxide and gaseous carbon dioxide. Use the data below to determine how much heat is required to decompose 1.35×10^3 kg of limestone.(9 pts.)

Species	CaCO ₃ (s)	CaO (s)	Ca ²⁺ (aq)	CO ₂ (g)	CO ₃ ²⁻ (aq)	C(g)
ΔH_{f}^{o} (kJ/mol)	-1207	-635.1	-542.8	-393.5	-677.1	+716.7

This is problem 7-91

Balanced equation:
$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

$$\Delta H^{\circ} = \Delta H_{f}^{\circ} \left[\text{CaO(s)} \right] + \Delta H_{f}^{\circ} \left[\text{CO}_{2} \left(g \right) \right] - \Delta H_{f}^{\circ} \left[\text{CaCO}_{3} \left(s \right) \right]$$
$$= \left(-635.1 - 393.5 - \left(-1207 \right) \right) \text{kJ} = +178 \text{ kJ}$$

heat =
$$1.35 \times 10^3$$
 kg $CaCO_3 \times \frac{1000 \text{ g}}{1 \text{ kg}} \times \frac{1 \text{ mol } CaCO_3}{100.09 \text{ g } CaCO_3} \times \frac{178 \text{ kJ}}{1 \text{ mol } CaCO_3} = 2.40 \times 10^6 \text{ kJ}$

Possibly Useful Information

	q = mC∆T							$q_{rxn} = -q_{calorimeter}$									
	$q_{rxn} = n_{LR} \Delta H_{rxn}$							K = °C + 273.15									
1 1A																	18
1 H 1.00794	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	8A He 4.00260
3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
11 Na 22.9898	12 Mg 24.3050	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 -8B-	10	11 1B	12 2B	13 Al 26.9815	14 Si 28.0855	15 P 30.9738	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9381	26 Fe 55.847	27 Co 58.9332	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	47 Ag 107.868	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126.904	54 Xe 131.29
55 Cs 132.905	56 Ba 137.327	57 *La 138.906	72 Hf 178.49	73 Ta 180.948	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.967	80 Hg 200.59	81 Tl 204.383	82 Pb 207.2	83 Bi 208.980	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.025	89 †Ac 227.028	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (271)	111 Rg (272)							
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
*Lar	nthanid	e series		Ce 140.115	Pr 140.908	Nd 144.24	Pm (145)	Sm 150.36	Eu 151.965	Gd 157.25	Tb 158.925	Dy 162.50	Ho 164.930	Er 167.26	Tm 168.934	Yb 173.04	Lu 174.967

Am

Md

(252)

No

Lr

Th

232.038

231.036

[†]Actinide series