CHEM	130		
Quiz 3	- June	30,	2016

Name	
	_

Complete the following problems. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units.

1. In the laboratory, you weigh out 0.114 grams of solid AlCl₃•6H₂O (molar mass 241.43 g/mol), dissolve it, and dilute it to a total volume of 100.0 mL to make solution A. You then transfer 3.00 mL of solution A into a 25.0 mL volumetric flask and dilute to the mark to make solution B. What is the molarity of **choride ion** in solution B? (8 pts.)

- 2. Write the <u>net ionic equation</u> and <u>overall reaction</u> for each of the following, indicating the states (s, ℓ, g, aq) of the reactants and products. (8 pts.)
 - a. Aqueous sodium carbonate reacts with aqueous silver nitrate.

b. Aqueous calcium hydroxide reacts with aqueous sulfuric acid.

3. A 3.57 g sample of a mixture of KCl and KClO₃ is decomposed by heating, producing 119 mL O₂ gas measured at 22.4° C and 738 mm Hg. What is the mass percent of KClO₃ in the mixture? KClO₃ decomposes via the reaction below, while KCl remains unchanged. (9 pts.) 2KClO₃ (s) \rightarrow 2KCl (s) + 3O₂ (g)

Possibly Useful Information

	R = 0.08206 L atm mol-1 K-1								1 atmosphere = 760 Torr = 760 mm Hg								
	PV =nRT						$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$				K = °C + 273.15						
1 1A																	18 8A
1 H 1.00794	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.00260
3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
11 Na 22.9898	12 Mg 24.3050	3 3B	4 4B	5 5B	6 6B	7 7B	8	$-\frac{9}{8B}$	10	11 1B	12 2B	13 Al 26.9815	14 Si 28.0855	15 P 30.9738	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9381	26 Fe 55.847	27 Co 58.9332	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	47 Ag 107.868	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126.904	54 Xe 131.29
55 Cs 132.905	56 Ba 137.327	57 *La 138.906	72 Hf 178.49	73 Ta 180.948	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.967	80 Hg 200.59	81 Tl 204.383	82 Pb 207.2	83 Bi 208.980	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.025	89 †Ac 227.028	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (271)	111 Rg (272)							
*Lanthanide series				60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.965	64 Gd 157.25	65 Tb 158.925	66 Dy 162.50	67 Ho 164.930	68 Er 167.26	69 Tm 168.934	70 Yb 173.04	71 Lu 174.967		
[†] Actinide series 90 Th			91 Pa 231.036	92 U 238.029	93 Np 237.048	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)		

Copyright © 2007 Pearson Prentice Hall, Inc.