Chem 130	Name
Exam 2, Ch 4-6	July 7, 2016
100 Points	
Please follow the instructions for ea	ach section of the exam. Show your work on all mathematical

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part 0: Warmup. 4 points each

2.

- 1. For a fixed amount of gas at a fixed pressure, changing the temperature from 100°C to 200K causes the gas volume to:
 - a. double c. decrease

b.	increase	d.	stay the same	Answer	_(>
To p	precipitate Zn ²⁺ from a solution	on o	f Zn(NO ₃) ₂ , add			

a. NH_4CI c. K_2CO_3

b. $MgBr_2$ d. $(NH_4)_2SO_4$

Answer _____c____

Part I: Complete all of problems 3-8

3. Complete the chart below: (12 points)

Species	Name	Oxi	Water Soluble? (Y/N)		
Al ₂ (SO ₄) ₃	aluminum sulfate	Al = +3	S =+6	0 =-2	Y
Zn ₃ (PO ₄) ₂	zinc (II) phosphate	Zn =+ <mark>2</mark>	0 = -2	P = +5	Ν

4. Write the (1) *overall reaction* and (2) *net ionic equation* for the following reactions. Indicate the state of all reactants and products. (10 points)

a. Aqueous potassium sulfate with aqueous calcium chloride.

(1) Overall reaction:

$$K_2SO_4$$
 (aq) + CaCl₂ (aq) \rightarrow CaSO₄ (s) + 2 KCl (aq)

(2) Net ionic equation:

$$Ca^{2+}(aq) + SO_4^{2-}(aq) \rightarrow CaSO_4(s)$$

b. Aqueous ammonium carbonate with aqueous silver nitrate.

(1) Overall reaction:

$$(NH_4)_2CO_3$$
 (aq) + 2 AgNO₃(aq) \rightarrow Ag₂CO₃ (s) + 2 NH₄NO₃ (aq)

(2) Net ionic equation:

$$2 \operatorname{Ag}^{+}(\operatorname{aq}) + \operatorname{CO}_{3}^{2-}(\operatorname{aq}) \rightarrow \operatorname{Ag}_{2}\operatorname{CO}_{3}(s)$$

5. Ammonia can be generated by heating together the solids NH₄Cl and Ca(OH)₂ to produce NH₃, water, and CaCl₂. If a mixture containing 33.0 g each of ammonium chloride and calcium hydroxide is heated, how many grams of ammonia will form? (10 points)

$$2 \text{ NH}_4\text{Cl} + \text{Ca}(\text{OH})_2 \rightarrow 2 \text{ NH}_3 + 2 \text{ H}_2\text{O} + \text{CaCl}_2$$

 $33.0 \text{ g-NH}_{4}\text{Cl} \times \underline{1 \text{ mol NH}_{4}\text{Cl}}_{53.4912 \text{ g}} \times \underline{2 \text{ mol NH}_{3}}_{2 \text{ mol NH}_{4}\text{Cl}} \times \underline{17.0356 \text{ g NH}_{3}}_{1 \text{ mol NH}_{3}} = 10.51 \text{ g NH}_{3}$ $33.0 \text{ g-Ca(OH)}_{2} \times \underline{1 \text{ mol Ca}(OH)}_{2} \times \underline{2 \text{ mol NH}_{3}}_{74.093 \text{ g}} \times \underline{2 \text{ mol NH}_{3}}_{1 \text{ mol Ca}(OH)}_{2} \times \underline{17.0356 \text{ g NH}_{3}}_{1 \text{ mol NH}_{3}} = 15.17 \text{ g NH}_{3}$

Since the ammonium chloride produces less, it must be the limiting reagent, so 10.5 g NH_3 will be formed.

6. Balance the following redox reaction in acidic solution. (10 points)

 $UO^{2+} + NO_3 \rightarrow UO_2^{2+} + NO_3$

Oxidation
Reduction
Overall $3(UO^{2^+} + H_2O \rightarrow UO_2^{2^+} + 2H^+ + 2e^-)$
 $2(NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O)$ $3UO^{2^+} + 3H_2O + 2NO_3^- + 8H^+ + 6e^- \rightarrow 3UO_2^{2^+} + 6H^+ + 6e^- + 2NO + 4H_2O$ Final $3UO^{2^+} + 2NO_3^- + 2H^+ \rightarrow 3UO_2^{2^+} + 2NO + H_2O$

7. In order for your car battery to function properly, the sulfuric acid in the battery must be between 4.8 and 5.3 M H₂SO₄. A 5.00 mL sample of acid from a battery requires 49.74 mL of 0.935 M NaOH to be completely neutralized in a titration. Does the concentration of this battery acid fall within the desired range? (10 points)

$$2 \text{ NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2 \text{ H}_2\text{O}$$

49.74 mL NaOH x 0.935 mol NaOH x 1 mol H₂SO₄ x 1 mol H₂SO₄ x 1 mol H₂SO₄ = 4.65 M H₂SO₄ = 4.65 M H₂SO₄

No, the concentration of acid is outside the desired range.

A 2.89 g aluminum ore sample is reacted with excess HCl in the reaction below, and the liberated H₂ is collected over water at 25°C at a pressure of 744 mm Hg. If 322 mL of hydrogen is collected, what is the percent aluminum (by mass) in the sample? (10 points) 2 Al(s) + 6 HCl (aq) → 2 AlCl₃(aq) + 3 H₂(g)

 $P_T = P_{H2} + P_{H2O}$ so that 744 mm Hg = $P_{H2} + 23.76$ mm Hg and $P_{H2} = 720.24$ mm Hg

 $P_{H2} = 720.24 \text{ mm Hg} \text{ x } 1 \text{ atm} = 0.9476 \text{ atm} 760 \text{ mm Hg}$

 $n_{H2} = \frac{PV}{RT} = \frac{(0.9476 \text{ atm})(0.322 \text{ L})}{(0.08206 \text{ L-atm}/\text{mol K})(298\text{ K})} = 0.01248 \text{ mol H}_2$

0.2245 g Al x 100% = **7.77% Aluminum** 2.89 g sample

Part II. Answer three (3) of problems 9-12. Clearly mark the problem you do not want graded. 10 points each.

9. In a combustion reaction, 5.00 g of ethanol (C₂H₆O) is allowed to react in a 2.00 L container filled with oxygen gas at a pressure of 2.08 atm and a temperature of 100°C, producing water and carbon dioxide. If 1.53 g water forms, what is the percent yield for the reaction?

$$C_2H_6O + 3 O_2 \rightarrow 3 H_2O + 2 CO_2$$

If ethanol is limiting reactant:

 $5.00 \text{ g-}C_2H_6\Theta \times \underbrace{1 \text{ mol-}C_2H_6\Theta}_{46.0684 \text{ g-}C_2H_6\Theta} \times \underbrace{3 \text{ mol-}H_2\Theta}_{1 \text{ mol-}C_2H_6\Theta} \times \underbrace{18.0153 \text{ g} H_2O}_{1 \text{ mol-}H_2\Theta} = 5.86_6 \text{ g} H_2O$ If oxygen is limiting reactant: $n = \underbrace{PV}_{RT} = \underbrace{(2.08 \text{ atm})(2.00 \text{ L})}_{(0.08206 \text{ L} \text{ atm/mol} \text{ K})(373 \text{ K})} = 0.135 \text{ mol} O_2$

Therefore, oxygen is the limiting reactant and the theoretical yield is 2.44₈ g H₂O

% yield =
$$1.53 \text{ g water}_{2.44_{8}\text{g water}} \times 100\% = 62.5 \% \text{ yield}$$

10. The ideal gas law works best under a very limited set of conditions. What are these conditions? What assumptions of the ideal gas law fail as you deviate from these conditions?

Two key assumptions of the ideal gas law are that there is a large space between particles and that particles do not interact with one another when they collide (they have elastic collisions).

These two assumptions work best under low pressure and high temperature conditions. Low pressure corresponds to large space between particles and, therefore, infrequent collisions. At high temperatures, particles have higher velocities and kinetic energies. Therefore, any energy lost in collisions is minimal compared to the particle's total kinetic energy. 11. A student puts 50.0 grams each of dry ice (solid carbon dioxide) and liguid nitrogen into a 500.0 mL soda bottle and quickly closes the lid. After a short time, all of the CO_2 and N_2 have been converted into gas and allowed to reach a temperature of 27.2°C. a. What is the total pressure in the container? (7 points)

To find the total pressure, we need the total number of moles of gas: $50.0 \text{ g} \frac{\text{CO}_2}{\text{CO}_2} \times \frac{1 \text{ mol } \text{CO}_2}{44.010 \text{ g} \frac{\text{CO}_2}{\text{CO}_2}} = 1.136 \text{ mol } \text{CO}_2$

50.0 g N_2 x <u>1 mol N_2</u> = 1.785 mol N_2 28.0134 g N_2

So, the total moles of gas is: 1.136 + 1.785 = 2.921 moles

$$P = \underline{nRT} = (2.921 \text{ mol})(0.08206 \text{ L atm/mol K})(300.35 \text{ K}) = 144 \text{ atm}$$

$$(0.500 \text{ L})$$

b. What is the partial pressure of CO_2 in the container? (3 points)

$$P_{CO2} = n_{CO2}RT = (1.136 \text{ mol})(0.08206 \text{ L atm/mol K})(300.35 \text{ K}) = 56.0 \text{ atm}$$

V 0.500 L)

Another approach is to use $P_{CO2} = X_{CO2}P_{Total} = (1.136/2.921) \times 144$ atm = 56.0 atm

12. You dissolve 2.83 g of a copper-containing mixture in water in a 100.0 mL volumetric flask and dilute it to the mark to prepare solution A. You then pipet 5.00 mL of solution A into a 25.00 mL volumetric flask and dilute it to the mark to make solution B. Finally, you pipet 1.00 mL of solution B into a 25.00 mL flask and dilute it to the mark to make solution C. You then determine the copper concentration in solution C to be 6.62 x 10^{-4} M. What is the percent copper by mass in your original solid mixture?

For solution B:

$$M_{\rm B} = \frac{M_{\rm C}V_{\rm C}}{V_{\rm B}} = \frac{(6.62 \times 10^{-4} \text{M})(25.00 \text{ mL})}{1.00 \text{ mL}} = 0.01655 \text{ M} = [\text{B}]$$

For solution A:

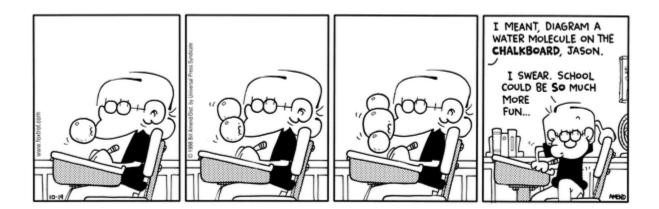
 $M_{A} = M_{B}V_{B} = (0.01655 \text{ M})(25.00 \text{ mL}) = 0.08275 \text{ M} = [A]$ $V_{A} = 5.00 \text{ mL}$

So, the molarity of copper in solution A is 0.08275 M, how many grams of copper must be in the solution?

$$0.1000 \text{ L sol'n } \times 0.08275 \text{ mol Cu} \times 63.546 \text{ g Cu} = 0.5258 \text{ g Cu}$$

1 L sol'n 1 mol Cu

So, the percent copper is:


Possibly Useful Information

R = 0.08206 L atm mol ⁻¹ K ⁻¹	K = °C + 273.15
1 atmosphere = 760 Torr = 760 mm Hg	$\left(P+a\left(\frac{n}{V}\right)^{2}\right)(V-bn)=nRT$
P _{total} =n _{total} RT/V	$P_A = X_a P_{total}$
N _a = 6.02214 x 10 ²³ mol ⁻¹	$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

Molar Masses					
Compound	Molar Mass (g/mol)				
AICI ₃	133.3396				
C ₂ H ₆ O	46.0684				
Ca(OH) ₂	74.093				
CaCl ₂	110.983				
CO ₂	44.010				
H ₂	2.01588				
H ₂ O	18.0153				
HCI	36.4606				
H_2SO_4	98.079				
NaOH	39.9971				
NH ₃	17.0356				
NH₄CI	53.4912				
N ₂	28.0134				
O ₂	31.9988				

Vapor Pressure of Water at Various Temperatures						
Temperature (°C)	Vapor Pressure (mmHg)					
15.0	12.79					
17.0	14.53					
19.0	16.48					
21.0	18.65					
23.0	21.07					
25.0	23.76					
30.0	31.82					
50.0	92.51					

Copyright © 2007 Pearson Prentice Hall, Inc.

[†] Act	*Lar	87 Fr (223)	55 Cs 132.905	37 Rb 85.4678	19 K 39.0983	11 Na 22.9898	3 Li 6.941	1 1A 1A H 1.00794
[†] Actinide series	ıthanid	88 Ra 226.025	56 Ba 137.327	38 Sr 87.62	20 Ca 40.078	12 Mg 24.3050	4 Be 9.01218	2 2A
eries	*Lanthanide series	89 [†] Ac 227.028	57 *La 138.906	39 Y 88.9059	21 Sc 44.9559	3 _В		
		104 Rf (261)	72 Hf 178.49	40 Zr 91.224	22 Ti 47.88	4B		
90 Th 232.038	58 Ce 140.115	105 Db (262)	73 Ta 180.948	41 Nb 92.9064	23 V 50.9415	5 ^в 2		
91 Pa 231.036	59 Pr 140.908	106 Sg (266)	74 W 183.84	42 Mo 95.94	24 Cr 51.9961	6B		
92 U 238.029	60 Nd 144.24	107 Bh (264)	75 Re 186.207	43 Tc (98)	25 Mn 54.9381	7B		
93 Np 237.048	61 Pm (145)	108 Hs (277)	76 Os 190.23	44 Ru 101.07	26 Fe 55.847	\sim		
94 Pu (244)	62 Sm 150.36	109 Mt (268)	77 Ir 192.22	45 Rh 102.906	27 Co 58.9332	-8B-		
95 Am (243)	63 Eu 151.965	110 Ds (271)	78 Pt 195.08	46 Pd 106.42	28 Ni 58.693	10		
96 Cm (247)	64 Gd 157.25	111 Rg (272)	79 Au 196.967	47 Ag 107.868	29 Cu 63.546	11 1B		
97 Bk (247)	65 Tb 158.925		80 Hg 200.59	48 Cd 112.411	30 Zn 65.39	12 2B		
98 Cf (251)	66 Dy 162.50		81 Tl 204.383	49 In 114.818	31 Ga 69.723	13 Al 26.9815	5 B 10.811	13 3A
99 Es (252)	67 Ho 164.930		82 Pb 207.2	50 Sn 118.710	32 Ge 72.61	14 Si 28.0855	6 C 12.011	14 4A
100 Fm (257)	68 Er 167.26		83 Bi 208.980	51 Sb 121.757	33 As 74.9216	15 P 30.9738	7 N 14.0067	15 5A
101 Md (258)	69 Tm 168.934		84 Po (209)	52 Te 127.60	34 Se 78.96	16 S 32.066	8 O 15.9994	16 6A
102 No (259)	70 Yb 173.04		85 At (210)	53 I 126.904	35 Br 79.904	17 Cl 35.4527	9 F 18.9984	17 7A
103 Lr (262)	71 Lu 174.967		86 Rn (222)	54 Xe 131.29	36 Kr 83.80	18 Ar 39.948	10 Ne 20.1797	18 8A He 4.00260

Copyright © 2007 Pearson Prentice Hall, Inc.