CHEM 130	
Ouiz 9 - November 17	2017

Complete the following problems. Write your final answers in the blanks provided.

1. At 25°C, 0.760 mol SO_3 is placed in an otherwise empty 5.00 L container. When equilibrium is reached, 0.160 mol of O_2 is present. What is K_c at this temperature? (8 points) $2SO_3(g) \not\approx 2SO_2(g) + O_2(g)$

_			
Answer			

2. Determine K_c for the reaction: $2NOCI(g) \approx N_2(g) + O_2(g) + CI_2(g)$ from the following data at 298K: (8 points)

$$\begin{array}{lll} \text{1.2 N}_2(g) + O_2(g) & \neq NO_2(g) & \text{K}_c = 1.0 \text{ x } 10^{-9} \\ \text{NOCI}(g) + \text{1.2 O}_2(g) & \neq NO_2\text{CI}(g) & \text{K}_c = 1.1 \text{ x } 10^2 \\ \text{NO}_2(g) + \text{1.2 CI}_2(g) & \neq NO_2\text{CI}(g) & \text{K}_c = 0.3 \end{array}$$

3. Phosphorus pentachloride decomposes according to the chemical equation below. A 0.280 mol sample of $PCl_5(g)$ is injected into an empty 4.00 L reaction vessel held at 250°C. Calculate the concentrations of $PCl_5(g)$ and $PCl_3(g)$ at equilibrium. (9 points) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ $K_c = 1.80$ at 250°C

Answer_

Possibly Useful Information

slope = m = $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	R = 0.08206 L atm mol ⁻¹ K ⁻¹ R = 8.314 J mol ⁻¹ K ⁻¹
pV = nRT	$\Delta G = -RTInK$	$K_p = K_c(RT)^{\Delta n}$