Quiz 9 - November 17, 2017

Complete the following problems. Write your final answers in the blanks provided.

1. At 25°C, 0.760 mol SO₃ is placed in an otherwise empty 5.00 L container. When equilibrium is reached, 0.160 mol of O₂ is present. What is K_c at this temperature? (8 pts) $2SO_3(g) \ge 2SO_2(g) + O_2(g)$

There are several ways to approach this. In the end, we need equilibrium concentrations of all species.

Answer	0.0169	
,o		

2. Determine K_c for the reaction: $2NOCI(g) \neq N_2(g) + O_2(g) + CI_2(g)$ from the following data at 298K: (8 points)

We need to rearrange reactions to make our target reaction:

$$\begin{array}{lll} 2(NO_2(g) \rightleftarrows 1/2 \ N_2(g) + O_2(g)) & K_c = 1/(1.0 \ x \ 10^{-9})^2 \\ 2(NOCl(g) + 1/2 \ O_2(g) \rightleftarrows NO_2Cl(g)) & K_c = (1.1 \ x \ 10^2)^2 \\ 2(NO_2Cl(g) \rightleftarrows NO_2(g) + 1/2 \ Cl_2(g)) & K_c = 1/(0.3)^2 \end{array}$$

So, the sum of the reactions is:

$$\begin{aligned} 2NO_2 + 2NOCI + O_2 + 2NO_2CI & \stackrel{>}{\sim} N_2 + 2O_2 + 2NO_2CI + 2NO_2 + CI_2 \\ 2NO_2CI & \stackrel{>}{\sim} N_2 + O_2 + CI_2 \end{aligned}$$

$$K_c = \underbrace{ (1.1 \times 10^2)^2}_{ (1.0 \times 10^{-9})^2 (0.3)^2} = 1.3 \times 10^{23}$$

3. Phosphorus pentachloride decomposes according to the chemical equation below. A 0.280 mol sample of PCl₅(g) is injected into an empty 4.00 L reaction vessel held at 250°C. Calculate the concentrations of PCl₅(g) and PCl₃(g) at equilibrium.

Inserting 1.80 for K_c

$$x^2 + 1.80x - 0.126 = 0$$

 $x^2 + K_c x - 0.0700 K_c = 0$

Using the quadratic equation with a = 1, b = 1.80 and c = -0.126 gives:

x = 0.067 or -1.87

Since we've defined x as a concentration, a negative value makes no chemical sense, therefore the appropriate value for x is 0.067 or $[PCl_3] = [Cl_2] = 0.0675$ M and $[PCl_5] = 0.0700-0.0675 = 0.0025$ M

Answer_[PCl₃] 0.0675 M and [PCl₅] = 0.0025 M_

Possibly Useful Information

slope = m = $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	R = 0.08206 L atm mol ⁻¹ K ⁻¹ R = 8.314 J mol ⁻¹ K ⁻¹
pV = nRT	$\Delta G = -RTInK$	$K_p = K_c(RT)^{\Delta n}$