Complete the following problems. Write your final answers in the blanks provided.

1. Determine the ΔH° for this reaction from the data below. (8 pts)

Reaction	∆H°
$N_2H_4 + O_2 \rightarrow N_2 + 2H_2O$	-622.2 kJ
$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$	-285.8 kJ
$H_2 + O_2 \rightarrow H_2O_2$	-187.8 kJ

Answer______
2. You are planning to deep fry some Oreos by heating cooking oil in a pan on a natural gas stove. Your source of heat will be the combustion of natural gas (methane, molar mass 16.04 g/mol), shown below. What mass of methane must burn to heat 2.02 kg of cooking oil from 72°F (22.2°C) to 375°F (190.6°C) to make some delicious treats? The specific heat capacity of the cooking oil is 1.75 J/(g°C), the specific heat capacity of water is 4.184 J.(g°C). (9 pts)

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g) \Delta H^{\circ} = -882.0 \text{ kJ}$

Answer_____

3. The overall reaction for the combustion of benzene (C_6H_6) is shown below. Use the data in the table at the right to calculate $\Delta H^o{}_f$ of benzene. (8 pts)

 $2 C_6 H_6(\ell) + 15 O_2(g) \rightarrow 12 CO_2(g) + 6 H_2O(\ell) \Delta H^\circ = -6535 \text{ kJ}$

Substance	∆H° _f (kJ/mol)
C(g)	+716.7
C(graphite)	0
CO(g)	-110.5
CO ₂ (g)	-393.5
H(g)	+218.0
$H_2(g)$	0
$H_2O(g)$	-241.8
$H_2O(\ell)$	-285.8
O(g)	+249.2
$O_2(g)$	0
O ₃ (g)	+142.7

Answer_____

Possibly Useful Information

$KE = \frac{1}{2}mv^2$	K = °C + 273.15	$q_{lost} = -q_{gained}$
q=mc∆T	$q=n_{LR}\Delta H_{rxn}$	q=m∆H