Complete the following problems. Write your final answers in the blanks provided.

1. Determine the ΔH° for this reaction from the data below. (8 pts)

 $N_2 + 4H_2O \rightarrow N_2H_4 + 2H_2O_2$

Reaction	ΔH°
$N_2H_4 + O_2 \rightarrow N_2 + 2H_2O$	-622.2 kJ
$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$	-285.8 kJ
$H_2 + O_2 \rightarrow H_2O_2$	-187.8 kJ

We need to re-write the reactions so that we end up with the appropriate reactants and products, with the correct stoichiometry, and do the same things to the ΔH 's that we do to the reactions.

Reverse 1 st reaction	$N_2(g) + 2H_2O(\ell) \rightarrow N_2H_4(\ell) + O_2(g)$	∆H [°] = -(-622.2 kJ)
Reverse 2 nd reaction and multiply by 2	$2[H_2O(l) \rightarrow H_2(g) + \frac{1}{2}O_2(g)]$	$\Delta H^{\circ} = (-2)(-285.8 \text{ kJ})$
Multiply 3 rd reaction by 2	$2[H_2(g) + O_2(g) \to H_2O_2(\ell)]$	$\Delta H^{\circ} = (2)(-187.8 \text{ kJ})$

Now our overall reaction is:

$$\begin{split} \mathsf{N}_2(g) + 2\mathsf{H}_2\mathsf{O}(\ell) + 2\mathsf{H}_2\mathsf{O}(\ell) + \frac{2\mathsf{H}_2(g)}{\mathsf{Q}} + \frac{2\mathsf{O}_2(g)}{\mathsf{Q}} \to \mathsf{N}_2\mathsf{H}_4(\ell) + \frac{\mathsf{O}_2(g)}{\mathsf{Q}} + \frac{2\mathsf{H}_2(g)}{\mathsf{H}_2(g)} + \frac{\mathsf{O}_2(g)}{\mathsf{Q}} + 2\mathsf{H}_2\mathsf{O}_2(\ell) \\ \mathsf{N}_2(g) + 4\mathsf{H}_2\mathsf{O}(\ell) \to \mathsf{N}_2\mathsf{H}_4(\ell) + 2\mathsf{H}_2\mathsf{O}_2(\ell) \end{split}$$

And the ΔH° = (-1)(-622.2 kJ) + (-2)(-285.8 kJ) + (2)(-187.8 kJ) = +818.2 kJ

Answer_____+818.2 kJ _____

 You are planning to deep fry some Oreos by heating cooking oil in a pan on a natural gas stove. Your source of heat will be the combustion of natural gas (methane, molar mass 16.04 g/mol), shown below. What mass of methane must burn to heat 2.02 kg of cooking oil from 72°F (22.2°C) to 375°F (190.6°C) to make some delicious treats? The specific heat capacity of the cooking oil is 1.75 J/(g°C), the specific heat capacity of water is 4.184 J.(g°C). (9 pts) CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(g) ΔH° = -882.0 kJ

 $\begin{array}{l} q_{rxn} = -q_{oil} \\ n_{rxn} \Delta H^{o}_{rxn} = -m_{oil} C_{oil} \Delta T_{oil} \\ n(-882.0 \text{ kJ/mol CH}_{4}) = -(2.02 \text{ kg})(1.75 \text{ J/g}^{o}\text{C})(190.6 - 22.2^{o}\text{C}) \\ n(-882.0 \text{ kJ/mol CH}_{4}) = -595.3 \text{ kJ} \\ n = -595.3 \text{ kJ/(-882.0 \text{ kJ/mol CH}_{4}) \\ n = 0.675 \text{ mol CH}_{4} \end{array}$

 $0.675 \text{ mol CH}_4 \quad x \quad \underline{16.04 \text{ g CH}_4}_1 = 10.8 \text{ g CH}_4$

3.	The overall reaction for the combustion of benzene (C_6H_6) is shown		
	below. Use the data in the table at the right to calculate ΔH^{o}_{f} of		
	benzene. (8 pts)		

 $2 C_6 H_6(\ell) + 15 O_2(g) \rightarrow 12 CO_2(g) + 6 H_2O(\ell) \Delta H^\circ = -6535 \text{ kJ}$

Substance	∆H° _f
	(kJ/mol)
C(g)	+716.7
C(graphite)	0
CO(g)	-110.5
CO ₂ (g)	-393.5
H(g)	+218.0
$H_2(g)$	0
$H_2O(g)$	-241.8
$H_2O(\ell)$	-285.8
O(g)	+249.2
O ₂ (g)	0
O ₃ (g)	+142.7

 $\Delta H^{\circ}_{rxn} = -6535 \text{ kJ} = \Sigma(n\Delta H^{\circ}_{f,products}) - \Sigma(n\Delta H^{\circ}_{f,reactants})$

 $-6535 \text{ kJ} = [12 \text{ mol}(-393.5 \text{ kJ/mol}) + 6 \text{ mol}(-285.8 \text{ kJ/mol})] - [2 \text{ mol}(\Delta H^{\circ}_{\text{f}}[C_{6}H_{6}(\ell)]) + 6 \text{ mol}(0 \text{ kJ/mol})]$

 $-6535 \text{ kJ} = -6437 \text{kJ} - 2 \text{ mol}(\Delta H^{\circ}_{f}[C_{6}H_{6}(\ell)])].$

-98 kJ = -2 mol($\Delta H^{\circ}_{f}[C_{6}H_{6}(\ell)])$].

So, $(\Delta H^{\circ}_{f}[C_{6}H_{12}O_{6}(s)] = +49 \text{ kJ/mol } C_{6}H_{6}(\ell)$

Answer____+49 kJ/mol C₆H₆(/)_____

Possibly Useful Information

$KE = \frac{1}{2}mv^2$	K = °C + 273.15	$q_{lost} = -q_{gained}$
q=mc∆T	$q=n_{LR}\Delta H_{rxn}$	q=m∆H