CHEM 130 Quiz 6 – Oct. 6, 2017

Complete the following problems. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units.

- 1. Write **overall reactions** and **net ionic equations** for the following. Identify the states of the products in the reaction. (8 points).
 - a. Aqueous lead (II) nitrate is mixed with aqueous potassium chloride.

Overall Reaction: $Pb(NO_3)_2(aq) + 2 KCI(aq) \rightarrow PbCI_2(s) + 2 KNO_3(aq)$

Net Ionic Reaction: $Pb^{2+}(aq) + 2Cl^{-}(aq) \rightarrow PbCl_{2}(s)$

b. Aqueous calcium hydroxide is mixed with aqueous sulfuric acid.

Overall Reaction: Ca(OH)₂(aq) + H₂SO₄(aq) \rightarrow 2 H₂O(ℓ) + CaSO₄(s)

Net Ionic Reaction: Same as overall reaction since all ions undergo some change

2. Balance the oxidation-reduction reaction below in acidic solution.(9 pts.)

 $Cr(s) + MnO_4(aq) \rightarrow CrO_4(aq) + Mn^{2+}$

Oxidation: $Cr + 4H_2O \rightarrow CrO_4^{2^-} + 8H^+ + 6e^-$ Reduction: $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2^+} + 4H_2O$

Combine equations:

 $\begin{array}{c} 5(\text{Cr}+4\text{H}_2\text{O}\rightarrow\text{Cr}\text{O}_4^{2^-}+8\text{H}^++6\text{e}^-)\\ \underline{6(\text{Mn}\text{O}_4^-+8\text{H}^+5\text{e}^-\rightarrow\text{Mn}^{2^+}+4\text{H}_2\text{O})}\\ 5\text{Cr}+20\text{H}_2\text{O}+6\text{Mn}\text{O}_4^-+48\text{H}^++30\text{e}^-\rightarrow5\text{Cr}\text{O}_4^{2^-}+40\text{H}^++30\text{e}^-+6\text{Mn}^{2^+}+24\text{H}_2\text{O} \end{array}$

Cancelling redundant terms:

 $5Cr + 6MnO_4^- + 8H^+ \rightarrow 5CrO_4^{2-} + 6Mn^{2+} + 4H_2O$

3. An iron ore sample weighing 0.9132 g is dissolved in HCl(aq), and all the iron is converted to Fe²⁺(aq). The resulting solution is titrated with 28.72 mL of 0.05051 M K₂Cr₂O₇(aq) using the balanced reaction below. What is the mass percent of iron in the iron ore? (9 pts)

 $6Fe^{2+} + 14H^{+} + Cr_2O_7^{2-} \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$

$$0.02872 \text{ L} \times 0.05051 \text{ mol } \text{Cr}_2 \text{O}_7^{2-} = 0.0.001451 \text{ mol } \text{Cr}_2 \text{O}_7^{2-}$$

1 L

 $0.0.001451 \text{ mol } \text{Cr}_2\text{O}_7^2 \text{ x } \underbrace{6 \text{ mol } \text{Fe}^{2+}}_{1 \text{ mol } \text{Cr}_2\text{O}_7^{2^-}} \text{ x } \underbrace{1 \text{ mol } \text{Fe}}_{1 \text{ mol } \text{Fe}^{2+}} \text{ x } \underbrace{55.847 \text{ g } \text{Fe}}_{1 \text{ mol } \text{Fe}} = 0.4860_8 \text{ g } \text{Fe}$

 $\frac{0.4860_8 \,\text{g Fe}}{0.9132 \,\text{g ore}} \times 100\% = 53.23\% \,\text{Fe}$

Possibly Useful Information

	1																	18
	1A																	8A
	1 H	2											13	14	15	16	17	2 Ho
	1.00794	2A											3A	4A	5A	6A	7A	4.00260
	3	4											5	6	7	8	9	10
	L1 6.941	9.01218											D 10.811	12.011	IN 14.0067	15.9994	Г 18.9984	1Ne 20.1797
ĺ	11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	INa 22.9898	1VIg 24.3050	3B	4B	5B	6B	7B	_	-8B-		1B	2B	AI 26.9815	S1 28.0855	P 30.9738	32.066	35.4527	Ar 39.948
ĺ	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K 39.0983	Ca 40.078	Sc 44.9559	47.88	V 50.9415	Cr 51.9961	Mn 54.9381	Fe 55.847	Co 58.9332	N1 58.693	63.546	Zn 65.39	Ga 69.723	Ge 72.61	As 74.9216	Se 78.96	Br 79.904	Kr 83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr 87.62	Y 88 9059	Zr	Nb	Mo	Tc (98)	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I 126 904	Xe
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	*La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Ро	At	Rn
	132.905	137.327	138.906	178.49	180.948	183.84	186.207	190.23	192.22	195.08	196.967	200.59	204.383	207.2	208.980	(209)	(210)	(222)
	87 Er	88 Ra	89 †Ac	104 Rf	105 Dh	106 Sg	107 Bh	108 He	109 M+	110 Dc	111 Pa							
	(223)	226.025	227.028	(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)							
ur (1 · 1 · 1				58	59 D	60	61 D	62	63	64	65	66	67	68 E	69 T	70	71	
	*Lar	nthanide series			Ce	Pr 140.000	INC	Pm (145)	5m	Eu	Gd	150.005	Dy	H0	Er	100 001	172.04	Lu
					140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	10/.26	108.934	1/3.04	1/4.967
					90	91	92	93	94	95	96	97	98	99	100	101	102	103

Copyright © 2007 Pearson Prentice Hall, Inc.

Am

(243)

Pu

(244)

Np

237.048

⁺Actinide series

Th

232.038

Pa

231.036

U

238.029

Bk

(247)

Cf

(251)

Es

(252)

Md

(258)

Fm

(257)

No

(259)

Lr

(262)

Cm

(247)