Quiz 8 - November 3, 2016

Complete the following problems. Write your final answers in the blanks provided.

1. From the information in the table below, determine the ΔG° for the following reaction. (8 pts) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

Reaction	Δ G °
$N_2(g) + O_2(g) \rightarrow 2NO(g)$	+173.1 kJ
$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$	-1010.5 kJ
$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	-33.0kJ
$2N_2(g) + O_2(g) \rightarrow 2N_2O(g)$	+208.4 kJ

Answer	•		

- 2. For each of the reactions below, select which of the following describes the reaction and justify your assertion in a sentence or two. (a) spontaneous at all temperatures, (b) nonspontaneous at all temperatures, (c) spontaneous at high temperatures, (d) spontaneous at low temperatures, (e) unable to tell. (8 pts)
 - a. $PCI_3(g) + CI_2(g) \rightarrow PCI_5(g) \Delta H^0 = -87.9 \text{ kJ}$
 - b. $NH_4CO_2NH_2(s) \rightarrow 2NH_3(g) + CO_2(g) \Delta H^0 = +159.2 \text{ kJ}$

3. A possible reaction for converting methanol to ethanol is

CO(g) + $2H_2(g)$ + $CH_3OH(g) \rightarrow C_2H_5OH(g)$ + $H_2O(g)$ Use the information below to calculate ΔG° and determine whether the reaction is spontaneous under standard conditions at 25°C. Is there a temperature where the sign of ΔG° changes? (9 pts)

Compound	ΔH° _f , kJ mol ⁻¹	ΔG° _f , kJ mol ⁻¹	S° _f , J mol ⁻¹ K ⁻¹
CO(g)	-110.5	-137.2	+197.7
$H_2(g)$	0	0	+130.7
CH ₃ OH(g)	-200.7	-162.0	+239.8
C ₂ H ₅ OH(g)	-235.1	-168.5	+282.7
H ₂ O(g)	-241.8	-228.6	+188.8

Answer		

Possibly Useful Information

K = °C + 273.15	q=mc∆T	q=n _{LR} ∆H _{rxn}	q=m∆H
$\Delta S_{universe} = \Delta S$	$S_{ m system}$ - $\Delta S_{ m surr}$	$\Delta G = \Delta H - T \Delta S$	$\Delta S_{surr} = -\Delta H_{sys}/T$

18 8A 4.00260	10 Ne 20.1797	18 Ar 39.948	36 Kr 83.80	54 Xe 131.29	86 Rn (222)	
	9 F 18.9984					
16 6A	8 O 15.9994	16 S 32.066	34 Se 78.96	52 Te	84 Po (209)	
15 5A	7 N 14.0067	15 P 30.9738	33 As 74.9216	51 Sb 121.757	83 Bi 208.980	
14 4A	6 C 12.011	14 Si 28.0855	32 Ge 72.61	50 Sn 118.710	82 Pb 207.2	
13 3A	5 B 10.811	13 A1 26.9815	31 Ga 69.723	49 In 114.818	81 T1 204.383	
		12 2B	30 Zn 65.39	48 Cd 112.411	80 Hg 200.59	
		11 1B	29 Cu 63.546	47 Ag 107.868	79 Au 196.967	111 Rg (272)
		10	28 Ni 58.693	46 Pd 106.42	78 Pt 195.08	110 Ds (271)
		9 -8B-	27 Co 58.9332	45 Rh 102.906	77 Ir 192.22	109 Mt
		∞	26 Fe 55.847	44 Ru 101.07	76 Os 190.23	108 Hs (277)
		7 7B	25 Mm 54.9381	43 Tc (98)	75 Re 186.207	107 Bh (264)
		6 6B	24 Cr 51.9961	42 Mo 95.94	74 W 183.84	106 Sg (266)
		5 5B	23 V 50.9415	41 Nb 92.9064	73 Ta 180.948	105 Db (262)
		4 4B	22 Ti 47.88	40 Zr 91.224	72 Hf 178.49	104 Rf (261)
		3 3B	21 Sc 44.9559	39 Y 88.9059	57 *La 138.906	⁸⁹ † Ac 227.028
2 2A	4 Be 9.01218	12 Mg 24.3050	20 Ca 40.078	38 Sr 87.62	56 Ba 137.327	88 Ra 226.025
1 1A 1 H 1.00794	3 Li 6.941	11 Na 22.9898	19 K 39.0983	37 Rb 85.4678	55 Cs 132.905	87 Fr (223)

		59	09	61	62	63	64	65	99	29	89	69	20	
*Lanthanide series	ů	Pr	PN	Pm	Sm	En	В	Tb	Dy	Но	Er	Tm	Хb	
		140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	
		16	92	93	94	95	96	46	86	66	100	101	102	
[†] Actinide series	Th	Pa	ח	Np	Pu	Am	Cm	Bk	Ç	Es	Fm	Md	N _o	
	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(222)	(257)	(258)	(523)	

Copyright © 2007 Pearson Prentice Hall, Inc.