Quiz 8 - November 3, 2016 Complete the following problems. Write your final answers in the blanks provided. 1. From the information in the table below, determine the ΔG° for the following reaction. (8 pts) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ | Reaction | Δ G ° | |--|--------------| | $N_2(g) + O_2(g) \rightarrow 2NO(g)$ | +173.1 kJ | | $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ | -1010.5 kJ | | $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ | -33.0kJ | | $2N_2(g) + O_2(g) \rightarrow 2N_2O(g)$ | +208.4 kJ | | Answer | • | | | |--------|---|--|--| | | | | | - 2. For each of the reactions below, select which of the following describes the reaction and justify your assertion in a sentence or two. (a) spontaneous at all temperatures, (b) nonspontaneous at all temperatures, (c) spontaneous at high temperatures, (d) spontaneous at low temperatures, (e) unable to tell. (8 pts) - a. $PCI_3(g) + CI_2(g) \rightarrow PCI_5(g) \Delta H^0 = -87.9 \text{ kJ}$ - b. $NH_4CO_2NH_2(s) \rightarrow 2NH_3(g) + CO_2(g) \Delta H^0 = +159.2 \text{ kJ}$ 3. A possible reaction for converting methanol to ethanol is CO(g) + $2H_2(g)$ + $CH_3OH(g) \rightarrow C_2H_5OH(g)$ + $H_2O(g)$ Use the information below to calculate ΔG° and determine whether the reaction is spontaneous under standard conditions at 25°C. Is there a temperature where the sign of ΔG° changes? (9 pts) | Compound | ΔH° _f , kJ mol ⁻¹ | ΔG° _f , kJ mol ⁻¹ | S° _f , J mol ⁻¹ K ⁻¹ | |-------------------------------------|---|---|---| | CO(g) | -110.5 | -137.2 | +197.7 | | $H_2(g)$ | 0 | 0 | +130.7 | | CH ₃ OH(g) | -200.7 | -162.0 | +239.8 | | C ₂ H ₅ OH(g) | -235.1 | -168.5 | +282.7 | | H ₂ O(g) | -241.8 | -228.6 | +188.8 | | Answer | | | |--------|--|--| ## **Possibly Useful Information** | K = °C + 273.15 | q=mc∆T | q=n _{LR} ∆H _{rxn} | q=m∆H | |----------------------------------|--|-------------------------------------|---------------------------------------| | $\Delta S_{universe} = \Delta S$ | $S_{ m system}$ - $\Delta S_{ m surr}$ | $\Delta G = \Delta H - T \Delta S$ | $\Delta S_{surr} = -\Delta H_{sys}/T$ | | 18
8A
4.00260 | 10
Ne
20.1797 | 18
Ar
39.948 | 36
Kr
83.80 | 54
Xe
131.29 | 86
Rn
(222) | | |------------------------------|---------------------|---------------------|---------------------|----------------------------|----------------------------|---| | | 9
F
18.9984 | | | | | | | 16
6A | 8
O
15.9994 | 16
S
32.066 | 34
Se
78.96 | 52
Te | 84
Po
(209) | | | 15
5A | 7
N
14.0067 | 15
P
30.9738 | 33
As
74.9216 | 51
Sb
121.757 | 83
Bi
208.980 | | | 14
4A | 6
C
12.011 | 14
Si
28.0855 | 32
Ge
72.61 | 50
Sn
118.710 | 82
Pb
207.2 | | | 13
3A | 5
B
10.811 | 13
A1
26.9815 | 31
Ga
69.723 | 49
In
114.818 | 81
T1
204.383 | | | | | 12
2B | 30
Zn
65.39 | 48
Cd
112.411 | 80
Hg
200.59 | | | | | 11
1B | 29
Cu
63.546 | 47
Ag
107.868 | 79
Au
196.967 | 111
Rg
(272) | | | | 10 | 28
Ni
58.693 | 46
Pd
106.42 | 78
Pt
195.08 | 110
Ds
(271) | | | | 9
-8B- | 27
Co
58.9332 | 45
Rh
102.906 | 77
Ir
192.22 | 109
Mt | | | | ∞ | 26
Fe
55.847 | 44
Ru
101.07 | 76
Os
190.23 | 108
Hs
(277) | | | | 7
7B | 25
Mm
54.9381 | 43
Tc
(98) | 75
Re
186.207 | 107
Bh
(264) | | | | 6
6B | 24
Cr
51.9961 | 42
Mo
95.94 | 74
W
183.84 | 106
Sg
(266) | | | | 5
5B | 23
V
50.9415 | 41
Nb
92.9064 | 73
Ta
180.948 | 105
Db
(262) | | | | 4
4B | 22
Ti
47.88 | 40
Zr
91.224 | 72
Hf
178.49 | 104
Rf
(261) | | | | 3
3B | 21
Sc
44.9559 | 39
Y
88.9059 | 57
*La
138.906 | ⁸⁹
† Ac
227.028 | | 2
2A | 4
Be
9.01218 | 12
Mg
24.3050 | 20
Ca
40.078 | 38
Sr
87.62 | 56
Ba
137.327 | 88
Ra
226.025 | | 1
1A
1
H
1.00794 | 3
Li
6.941 | 11
Na
22.9898 | 19
K
39.0983 | 37
Rb
85.4678 | 55
Cs
132.905 | 87
Fr
(223) | | | | 59 | 09 | 61 | 62 | 63 | 64 | 65 | 99 | 29 | 89 | 69 | 20 | | |------------------------------|---------|---------|---------|---------|--------|---------|--------|---------|--------|---------|--------|---------|----------------|--| | *Lanthanide series | ů | Pr | PN | Pm | Sm | En | В | Tb | Dy | Но | Er | Tm | Хb | | | | | 140.908 | 144.24 | (145) | 150.36 | 151.965 | 157.25 | 158.925 | 162.50 | 164.930 | 167.26 | 168.934 | 173.04 | | | | | 16 | 92 | 93 | 94 | 95 | 96 | 46 | 86 | 66 | 100 | 101 | 102 | | | [†] Actinide series | Th | Pa | ח | Np | Pu | Am | Cm | Bk | Ç | Es | Fm | Md | N _o | | | | 232.038 | 231.036 | 238.029 | 237.048 | (244) | (243) | (247) | (247) | (251) | (222) | (257) | (258) | (523) | | | | | | | | | | | | | | | | | | Copyright © 2007 Pearson Prentice Hall, Inc.