Complete the following problems. Write your final answers in the blanks provided.

1. From the information in the table below, determine the ΔG° for the following reaction. (8 pts) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

Reaction	∆G°
$N_2(g) + O_2(g) \rightarrow 2NO(g)$	+173.1 kJ
$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$	-1010.5 kJ
$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	-33.0kJ
$2N_2(g) + O_2(g) \rightarrow 2N_2O(g)$	+208.4 kJ

$2[2NO(g) \rightarrow N_2(g) + O_2(g)]$	-2(+173.1 kJ)
$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$	-1010.5 kJ
$2[N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)]$	2(-33.0kJ)
$4NO + 4NH_3 + 5O_2 + 2N_2 + 6H_2 →$ $2N_2 + 2O_2 + 4NO + 6H_2O + 4NH_3$	(-346.2 kJ) +(- 1010.5 kJ) +(- 66.0 kJ)
$1/3(3O_2 + 6H_2 \rightarrow 6H_2O)$	1/3(-1422.7 kJ)
$O_2 + 2H_2 \rightarrow 2H_2O$	-474.3 kJ

Answer____-474.3 kJ _____

 For each of the reactions below, select which of the following describes the reaction and justify your assertion in a sentence or two. (a) spontaneous at all temperatures, (b) nonspontaneous at all temperatures, (c) spontaneous at high temperatures, (d) spontaneous at low temperatures, (e) unable to tell. (8 pts)

a. $PCI_3(g) + CI_2(g) \rightarrow PCI_5(g) \Delta H^\circ = -87.9 \text{ kJ}$

 $\Delta H^{\circ} < 0$ and $\Delta S^{\circ} < 0$ (since there are fewer moles of gas on the products side compared to the reactants side) for this reaction. Thus, this reaction is spontaneous at low temperatures and non-spontaneous at high temperatures.

b. $NH_4CO_2NH_2(s) \rightarrow 2NH_3(g) + CO_2(g) \Delta H^\circ = +159.2 \text{ kJ}$

 $\Delta H^{\circ} > 0$ and $\Delta S^{\circ} > 0$ (since there are more moles of gas on the products side compared to the reactants side) for this reaction. This reaction is non-spontaneous at low temperatures, but spontaneous at high temperatures.

3. A possible reaction for converting methanol to ethanol is

 $CO(g) + 2H_2(g) + CH_3OH(g) \rightarrow C_2H_5OH(g) + H_2O(g)$

Use the information below to calculate ΔG° and determine whether the reaction is spontaneous under standard conditions at 25°C. Is there a temperature where the sign of ΔG° changes? (9 pts)

Compound	∆H [°] _f , kJ mol ⁻¹	∆G° _f , kJ mol ⁻¹	S ^o _f , J mol ⁻¹ K ⁻¹
CO(g)	-110.5	-137.2	+197.7
H ₂ (g)	0	0	+130.7
CH ₃ OH(g)	-200.7	-162.0	+239.8
C ₂ H₅OH(g)	-235.1	-168.5	+282.7
$H_2O(g)$	-241.8	-228.6	+188.8

$$\begin{split} \Delta H^{\circ} &= [\Delta H^{\circ}{}_{f}(C_{2}H_{5}OH(g)) + \Delta H^{\circ}{}_{f}(H_{2}O(g))] - [\Delta H^{\circ}{}_{f}(CO(g)) + 2\Delta H^{\circ}{}_{f}(H_{2}(g)) + \Delta H^{\circ}{}_{f}(CH_{3}OH(g))] \\ \Delta H^{\circ} &= [-235.1 \text{ kJ} + (-241.8 \text{ kJ})] - [(-110.5 \text{ kJ}) + 2(0 \text{ kJ}) + (-200.7 \text{ kJ})] \\ \Delta H^{\circ} &= -165.7 \text{ kJ} \end{split}$$

 $\Delta S^{\circ} = [S^{\circ}_{f}(C_{2}H_{5}OH(g)) + S^{\circ}_{f}(H_{2}O(g))] - [S^{\circ}_{f}(CO(g)) + 2S^{\circ}_{f}(H_{2}(g)) + S^{\circ}_{f}(CH_{3}OH(g))]$ $\Delta S^{\circ} = [282.7 \text{ J/K} + (188.8 \text{ J/K})] - [(197.7 \text{ J/K}) + 2(130.7 \text{ J/K}) + (239.8 \text{ J/K})]$ $\Delta S^{\circ} = -227.4 \text{ J/K}$

$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} = -165.7 \text{ kJ} - (298 \text{ K})(-0.2274 \text{ kJ/K}) = -97.9 \text{ kJ}$

Since ΔS° and ΔH° have the same sign, there must be a temperature that causes the sign of ΔG° to change. You can calculate that temperature as shown below but you did not have to.

 $0 = \Delta H^{\circ} - T\Delta S^{\circ}$ T = $\Delta H^{\circ} / \Delta S^{\circ}$ = -165.7 kJ/(0.2274 kJ/K) = 729 K

You could also have calculated ΔG° from the ΔG°_{f} values as shown below: $\Delta G^{\circ} = [\Delta G^{\circ}_{f}(C_{2}H_{5}OH(g)) + \Delta G^{\circ}_{f}(H_{2}O(g))] - [\Delta G^{\circ}_{f}(CO(g)) + 2\Delta G^{\circ}_{f}(H_{2}(g)) + \Delta G^{\circ}_{f}(CH_{3}OH(g))]$ $\Delta G^{\circ} = [-168.5 \text{ kJ} + (-228.6 \text{ kJ})] - [(-137.2 \text{ kJ}) + 2(0 \text{ kJ}) + (-162.0 \text{ kJ})]$

∆G° = -97.9 kJ

NOTE: You could make the judgment on whether ΔG° changes sign without actually calculating ΔH° and ΔS° . Looking at the reaction, there are 5 moles of gas on the reactant side and two moles of gas on the product side, indicating the ΔS° will be negative. Since $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$, if ΔS° is negative, the only way ΔG° could be negative as well is if ΔH° is also negative. If ΔS° and ΔH° both have the same sign, there must be a temperature where the sign of ΔG° changes.

Answer_____

Possibly	Useful	Inform	nation
----------	--------	--------	--------

K = °C + 273.15	q=	mc∆T	$q=n_{LR}\Delta H_{rxn}$	q=m∆H
$\Delta S_{universe} = \Delta S$	System - Δ	S _{surr}	$\Delta G = \Delta H - T \Delta$	S $\Delta S_{surr} = -\Delta H_{sys}/T$
	797 F 18		67 E	1 967 3 3 2
18/18/19/19/19/19/19/19/19/19/19/19/19/19/19/	A 20.17	83.5 83.5 83.5	R131.	71 Ll. 174.5 Ll. 100 (266)
17 7A	17 17 17 35.452	35 Br 79.904 53 I	At (210)	70 Yb 102 No (259)
16 6A 0	15.9994 16 S 32.066	34 Se 78.96 52 Te	84 86 70 (209)	69 Tm 168.934 101 Md (258)
15 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	14.0067 15 P 30.9738	33 As 74.9216 51 Sb	83 Bi 208.980	68 Er 167.26 100 Fm (257)
14 66 6	12.011 14 Si 28.0855	32 Ge 72.61 Sn	82 82 7b 207.2	67 Ho 164.930 99 Es (252)
13 3A ⁵	10.811 13 Al 26.9815	31 Ga 69.723 49 In	81 81 71 204.383	66 Dy 162.50 98 Cf (251)
	12 2B	30 Zn 65.39 48 Cd	Hg 200.59	65 Tb 97 97 Bk (247) (247)
	11 1B	29 Cu 63.546 47 Ag	79 79 79 196.967 111 Rg (272)	64 64 157.25 96 047 (247)
	10	28 Ni 58.693 46 Pd	78 78 195.08 195.08 Ds Ds (271)	63 Eu 151.965 95 Am (243) (243)
	-8B-	27 Co 58.9332 45 Rh	102.2906 Tr 192.222 192.222 109 Mt (268)	62 Sm 150.36 94 Pu (244) 7 Pear
	∞ (26 Fe 55.847 44 Ru	76 Os 190.23 190.23 Hs Hs (277)	61 Pm (145) 93 93 Np 237.048 237.048
	7B	25 Mn 54.9381 43 Tc	(98) 75 Re 186.207 107 Bh (264)	60 Nd 144.24 U 238.029 238.029
	6B	24 Cr 51.9961 42 Mo	74 74 74 74 183.84 183.84 106 58 58 (266)	59 Pr 91 91 Pa 231.036 CC
	5B 5B	23 V 41 Nb	73 73 180.948 180.948 105 Db (262)	58 Ce 140.115 90 Th 232.038
	4 4B	22 Ti 47.88 40 Zr	72 Hf 178.49 178.49 104 Rf (261)	
	3B 3B	21 Sc 44.9559 39 Y	57 57 *La 38.906 89 †Ac	series
2 2A Be	¹² Mg 24.3050	20 Ca 38 38 Sr	56 56 Ba 137.327 137.327 137.327 137.327 137.327 132.56.025 226.025 2	hanide nide ser
1 1A 1 1A 1.00794	11 11 Na 22.9898	19 K 39.0983 37 Rb	55 CS CS 132.905 Fr (223)	*Lant †Actir