Quiz 7 - October 28, 2016

Complete the following problems. Write your final answers in the blanks provided.

1. Determine the ΔH^{o} for this reaction from the data below. (8 pts)

$$N_2H_4 + 2H_2O_2 \rightarrow N_2 + 4H_2O$$

Reaction	ΔH°
$N_2H_4 + O_2 \rightarrow N_2 + 2H_2O$	-622.2 kJ
$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$	-285.8 kJ
$H_2 + O_2 \rightarrow H_2O_2$	-187.8 kJ

$N_2H_4 + O_2 \rightarrow N_2 + 2H_2O$	-622.2 kJ
$2(H_2 + \frac{1}{2}O_2 \rightarrow H_2O)$	2(-285.8 kJ)
$2(H_2O_2 \rightarrow H_2 + O_2)$	-2(-187.8 kJ)
$N_2H_4 + Q_2 + 2H_2 + Q_2 + 2H_2O_2 \rightarrow N_2 + 2H_2O + 2H_2O + 2H_2 + 2Q_2$	-818.2 kJ
$N_2H_4 + 2H_2O_2 \rightarrow N_2 + 4H_2O$	-818.2 kJ

Answer____-818.2 kJ _____

2. In a constant-pressure calorimeter, 55.0 mL of 0.680 M Ba(OH)₂ was added to 55.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 21.97°C to 26.60°C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H₂O produced)? Assume that the total volume is the sum of the individual volumes. (9 pts)

$$Ba(OH)_2 + 2HCI \rightarrow BaCl_2 + 2H_2O$$

How much H₂O is produced depends on limiting reactant:

$$0.0550 \vdash x = 0.680 \frac{\text{mol Ba}(OH)_2}{1 \vdash } \times \frac{2 \text{ mol H}_2O}{1 \frac{\text{mol Ba}(OH)_2}{2}} = 0.0748 \text{ mol H}_2O$$

$$0.0550 \perp x = 0.680 \frac{\text{mol HCl}}{1 \perp} = 0.0347 \text{ mol H}_2\text{O} = 0.0347 \text{ mol H}_2\text{O}$$

So, HCl is the limiting reactant and 0.0347 mol H₂O are produced. How much heat energy is associated with this reaction?

 q_{soin} = mc Δ T = (110 g)(4.184 J/g°C)(26.60°C-21.97°C) = 2131 J are absorbed by the solution during the reaction

$$q_{rxn} = -q_{rxn} = -n\Delta H$$

2131 J = -(0.0347 mol H₂O)(ΔH)

$$\Delta H = \frac{-2131 \text{ J}}{0.0347 \text{ mol H}_2\text{O}} = -56,976 \text{ J/mol H}_2\text{O} = -57.0 \text{ kJ/mol H}_2\text{O}$$

3. The overall reaction that occurs in the photosynthesis of plants is $6CO_2(g) + 6H_2O(g) \rightarrow C_6H_{12}O_6(s) + 6O_2 \Delta H^o = +2803 \text{ kJ}$ Determine the standard enthalpy of formation for glucose, $C_6H_{12}O_6(s)$. (8 pts)

$$\Delta H^{\circ}_{rxn}$$
 = +2803 kJ = $\Sigma (n\Delta H^{\circ}_{f,products}) - \Sigma (n\Delta H^{\circ}_{f,reactants})$

 $+2803 \text{ kJ} = [1 \text{ mol}(\Delta H^{\circ}_{f}[C_{6}H_{12}O_{6}(s)]) + 6 \text{ mol}(0 \text{ kJ/mol})] - [6 \text{ mol}(-393.5 \text{ kJ/mol}) + 6 \text{ mol}(-241.8 \text{ kJ/mol})]$

$$+2803 \text{ kJ} = (\Delta H^{\circ}_{f}[C_{6}H_{12}O_{6}(s)] - [-3811.8 \text{ kJ}].$$

So,
$$(\Delta H^{\circ}_{f}[C_{6}H_{12}O_{6}(s)] = -1008.8 \text{ kJ/mol } C_{6}H_{12}O_{6}(s)$$

Answer_-1009 kJ/mol C₆H₁₂O₆(s)___

Possibly Useful Information

$KE = \frac{1}{2}mv^2$	K = °C + 273.15	q _{lost} = -q _{gained}
q=mc∆T	q=n _{LR} ∆H _{rxn}	q=m∆H

Substance	ΔH° _f (kJ/mol)
C(g)	+716.7
C(graphite)	0
CO(g)	-110.5
CO ₂ (g)	-393.5
H(g)	+218.0
$H_2(g)$	0
$H_2O(g)$	-241.8
$H_2O(I)$	-285.8
O(g)	+249.2
O ₂ (g)	0
O ₃ (g)	+142.7

18 8A He 4.00260	10 Ne 20.1797	18 Ar 39.948	36 Kr 83.80	54 Xe 131.29	86 Rn (222)	
17 7A	9 F 18.9984	17 CI 35.4527	35 Br 79.904	53 I 126.904	85 At (210)	
16 6A	8 O 15.9994	16 S 32.066	34 Se 78.96	52 Te 127.60	84 Po (209)	
15 5A	7 N 14.0067	15 P 30.9738	33 As 74.9216	51 Sb 121.757	83 Bi 208.980	
14 4A	6 C 12.011	14 Si 28.0855	32 Ge 72.61	50 Sn 118.710	82 Pb 207.2	
13 3A	5 B 10.811	13 A1 26.9815	31 Ga 69.723	49 In 114.818	81 T1 204.383	
		12 2B	30 Zn 65.39	48 Cd 112.411	80 Hg 200.59	
		11 1B	29 Cu 63.546	47 Ag 107.868	79 Au 196.967	111 Rg (272)
		10	28 Ni 58.693	46 Pd 106.42	78 Pt 195.08	110 Ds (271)
		9 -8B-	27 Co 58.9332	45 Rh 102.906	77 Ir 192.22	109 Mt (268)
		∞	26 Fe 55.847	44 Ru 101.07	76 Os 190.23	108 Hs (277)
		7 7B	25 Mn 54.9381	43 Tc (98)	75 Re 186.207	107 Bh (264)
		6 6 8	24 Cr 51.9961	42 Mo 95.94	74 W 183.84	106 Sg (266)
		5 5B	23 V 50.9415	41 Nb 92.9064	73 Ta 180.948	105 Db (262)
		4B	22 Ti 47.88	40 Zr 91.224	72 Hf 178.49	104 Rf
		3 3B	21 Sc 44.9559	39 Y 88.9059	57 *La 138.906	⁸⁹ †Ac 227.028
2 A	4 Be 9.01218	12 Mg 24.3050	20 Ca 40.078	38 Sr 87.62	56 Ba 137.327	88 Ra 226.025
1 1A H 1.00794	3 Li 6.941	11 Na 22.9898	19 K 39.0983	37 Rb 85.4678	55 Cs 132.905	87 Fr (223)

	28	29	09	19	62	63	64	65	99	29	89	69	20	71
*Lanthanide series	Ce	Pr	Nd	Pm	Sm	Eu	PS	Tb	Dy	Ho	Er	Tm	χp	Lu
	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
	06	16	92	93	94	95	96	46	86	66	100	101	102	103
[†] Actinide series	Th	Pa	n	Np	Pu	Am	Cm	Bk	č	Es	Fm	Md	N _o	Lr
	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(523)	(292)

Copyright © 2007 Pearson Prentice Hall, Inc.