Complete the following problems. Write your final answers in the blanks provided. You must show your work to receive full credit. Show numerical answers to the correct number of significant figures with the correct units.

1. Consider the precipitation reaction that occurs when aqueous calcium chloride and aqueous silver (I) nitrate are mixed. If 25.0 mL of 0.325 M calcium chloride is mixed with 50.0 mL of 0.225 M silver nitrate, what mass of precipitate will form? (9 pts)

$$\text{CaCl}_{2}(\text{aq}) + 2\text{AgNO}_{3}(\text{aq}) \rightarrow 2\text{AgCl}(\text{s}) + \text{Ca}(\text{NO}_{3})_{2}(\text{aq})$$

$$0.0250 \vdash \times \underbrace{0.325 \, \text{mol CaCl}_{2}}_{1 \, \vdash \text{local}} \times \underbrace{2 \, \text{mol AgCl}}_{1 \, \text{mol CaCl}_{2}} \times \underbrace{143.32 \, \text{g AgCl}}_{1 \, \text{mol AgCl}} = 2.329 \, \text{g AgCl}$$

$$0.0500 \vdash \times \underbrace{0.225 \, \text{mol AgNO}_{3}}_{1 \, \vdash \text{local}} \times \underbrace{2 \, \text{mol AgCl}}_{2 \, \text{mol AgNO}_{3}} \times \underbrace{143.32 \, \text{g AgCl}}_{1 \, \text{mol AgCl}} = 1.612 \, \text{g AgCl}$$

Therefore, AgNO₃ is the limiting reactant and the theoretical yield is 1.61 g AgCl

_	4 04		
Answer_	1.61	g AgC	

2. Balance the reaction below in acidic aqueous solution and answer the following questions regarding the reaction. (8 pts) $SO_3^{2-} + MnO_4^- \rightarrow SO_4^{2-} + Mn^{2+}$

Reduction half reaction
$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

Oxidation half reaction $SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e^-$

Combining reactions:

$$2(MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O) +5(SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e^-)$$

$$2MnO_4^- + 46(6)H^+ + 40e^- + 5SO_3^{2-} + 5H_2O \rightarrow 2Mn^{2+} + 8(3)H_2O + 5SO_4^{2-} + 40H^+ + 40e^-$$

$$2MnO_4^- + 6H^+ + 5SO_3^{2-} + \rightarrow 2Mn^{2+} + 3H_2O + 5SO_4^{2-}$$

Balanced reaction:(6 pts) $2MnO_4^- + 6H^+ + 5SO_3^{2-} + \rightarrow 2Mn^{2+} + 3H_2O + 5SO_4^{2-}$

What is the oxidizing agent in the reaction? (1 pt)_____MnO₄-_____

What is the oxidation state for the sulfur in the sulfate ion? (1 pt)_____+6____

3. A sample of gas (0.190 mol) is in a 5.00 L flask at 21.0°C and 697.0 mm Hg. The flask is now opened and more gas is added to the flask. The new pressure is 795.0 mm Hg and the temperature is now 26.0°C. How many moles of gas are now in the flask? (8 pts)

$$\frac{P_1V_1}{n_1T_1} = \frac{P_2V_2}{n_2T_2}$$

From the information given:

 $P_1 = 697.0 \text{ mm Hg}, V_1 = 5.0 \text{ L}, n_1 = 0.190 \text{ mol}, T_1 = 21.0^{\circ}\text{C}$ $P_2 = 795.0 \text{ mm Hg}, V_2 = 5.0 \text{ L}, n_2 = ??? \text{ mol}, T_2 = 26.0^{\circ}\text{C}$

Converting units:

697.0 mm Hg x 1 atm =
$$0.917_1$$
 atm 795.0 mm Hg x 1 atm = 1.04_6 atm 760 mm Hg 760 mm Hg

$$21.0^{\circ}\text{C} + 273.15 = 294.15 \text{ K}$$
 $26.0^{\circ}\text{C} + 273.15 = 299.15 \text{ K}$

Rearranging the relationship to solve for n₂ and inserting values

Answer 0.213 mol

Possibly Useful Information

R = 0.08206 L atm mol ⁻¹ K ⁻¹				K = °C + 273.15				$P_{total}V = n_{total}RT$				
1 atmosphere = 760 Torr = 760 mm Hg			N _a =	$N_a = 6.02214 \times 10^{23} \text{mol}^{-1}$				$\frac{P_1V_1}{n_1T_1} = \frac{P_2V_2}{n_2T_2}$				
1 1A			·									18 8A
1 H 1.00794 2A							13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.00260
3 Li Be 6.941 9.01218							5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
11 12 3 4 Na Mg 22.9898 24.3050 3B 4B	5 6 5B 6B	7 8 7B	9 8B	10	11 1B	12 2B	13 Al 26.9815	14 Si 28.0855	15 P 30.9738	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 20 21 22 K Ca Sc Ti 39.0983 40.078 44.9559 47.88	23 24 V Cr 50.9415 51.9961	25 26 Mn Fe 54.9381 55.8		28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 38 39 40 Rb Sr Y Zr 85.4678 87.62 88.9059 91.224	41 42 Nb Mo 92.9064 95.94	43 44 Tc R1 (98) 101.	Rh	46 Pd 106.42	47 Ag 107.868	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126.904	54 Xe 131.29
55 56 57 72 Cs Ba *La Hf 132.905 137.327 138.906 178.49	73 74 Ta W 180.948 183.84	75 76 Re O	Ir	78 Pt 195.08	79 Au 196.967	80 Hg 200.59	81 Tl 204.383	82 Pb 207.2	83 Bi 208.980	84 Po (209)	85 At (210)	86 Rn (222)
87 88 89 104 Rf (223) 226.025 227.028 (261)	105 106 Db Sg (262) (266)	107 10 Bh H (264) (27	Mt	110 Ds (271)	111 Rg (272)							
*Lanthanide series	58 59 Ce Pr	60 61 Nd Pr		63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
†Actinide series	140.115 140.908 90 91 Th Pa	144.24 (14 92 93 U N	150.36	151.965 95 Am	157.25 96 Cm	158.925 97 Bk	162.50 98 Cf	164.930 99 Es	167.26 100 Fm	168.934 101 Md	173.04 102 No	174.967 103 Lr