CHEM 130	
Quiz 4 - September 16.	2016

Name _____

Complete the following problems. Write your final answers in the blanks provided. You must show your work to receive full credit. Show numerical answers to the correct number of significant figures with the correct units.

1. Determine the mass percent of oxygen in the mineral malachite, Cu₂(OH)₂CO₃. (8 pts)

Answer				

2. Complete the table below. (8 pts.)

Name	Formula
ammonium carbonate	
	Ba(OH)₂
	CrS₃
dinitrogen tetroxide	

Name	Formula
	MgCl ₂ •6H ₂ O
dihydrogen monoxide	
	SF ₆
cobalt (III) chromate	

3. Acetylene (C₂H₄) is often used in torches for metal cutting and welding. Consider the *unbalanced* reaction for the combustion of acetylene below. How many grams of oxygen are required to consume 15.30 grams of acetylene? (9 pts)

$$C_2H_4 + O_2 \rightarrow CO_2 + H_2O$$

Possibly Useful Information

% by mass = $\frac{\text{g component}}{1000}$	d = m/v	$N_{\odot} = 6.022 \times 10^{23}$
$\frac{90 \text{ by mass}}{100 \text{ g sample}}$	d = m/v	$N_A = 6.022 \times 10^{23}$

	0	7		00			•		Ī
18 8A	2 He 4.00260	10 Ne 20.179	18 Ar	39.94	36 Kr	83.80	54 Xe 131.2	86 Rn (222)	
	17 7A	9 F 18.9984	17 CI	35.4527	35 Br	79.904	53 I 126.904	85 At (210)	
	16 6A	8 O 15.9994	16 S	32.066	34 Se	78.96	52 Te 127.60	84 Po (209)	
	15 5A	7 N 14.0067	15 P	30.9738	33 As	74.9216	51 Sb 121.757	83 Bi 208.980	
	14 4A	6 C 12.011	Si Si	28.0855	32 Ge	72.61	50 Sn 118.710	82 Pb 207.2	
	13 3A	5 B 10.811	13 A1	26.9815	31 Ga	69.723	49 In 114.818	81 T1 204.383	
			12	ZD	30 Zn	62.39	48 Cd 112.411	80 Hg 200.59	
			11	ID	29 Cu	63.546	47 Ag 107.868	79 Au 196.967	111 Rg (272)
			10	/	28 Ni	58.693	46 Pd 106.42	78 Pt 195.08	110 Ds (271)
			6	OD	27 Co	58.9332	45 Rh 102.906	77 Ir 192.22	109 Mt (268)
			∞	\	26 Fe	55.847	44 Ru 101.07	76 Os 190.23	108 Hs (277)
			V 6	/D	25 Mn	54.9381	43 Tc (98)	75 Re 186.207	107 Bh (264)
			9	QQ	C ₇	51.9961	42 Mo 95.94	74 W 183.84	106 Sg (266)
			ر ا	OC	23	50.9415	41 Nb 92.9064	73 Ta 180.948	105 Db (262)
			4 5	4D	22 Ti	47.88	40 Zr 91.224	72 Hf 178.49	104 Rf (261)
			3	OC	21 Sc	44.9559	39 Y 88.9059	57 *La 138.906	89 †Ac 227.028
	2 2A	4 Be 9.01218	12 Mg	24.3050	20 Ca	40.078	38 Sr 87.62	56 Ba 137.327	88 Ra 226.025
1 1A	1 H 1.00794	3 Li 6.941	Na Na	22.9898	19 K	39.0983	37 Rb 85.4678	55 Cs 132.905	87 Fr (223)

	01	O.L	00	64	"	"	64	10	11	(1)	07	07	0	i
	28	96	99	19	79	63	5 0	69	99	/9	99	69	?	1/
*Lanthanide series	ಲ	Pr	PN	Pm	Sm	Eu	PS	Tb	Dy	Ho	Er	Tm	Хb	Γn
	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
	06	91	92	93	94	95	96	46	86	66	100	101	102	103
[†] Actinide series	Th	Pa	ם	Np	Pu	Am	Cm	Bk	Ç	Es	Fm	Md	No	Ľ
	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(229)	(292)

Copyright © 2007 Pearson Prentice Hall, Inc.