| CHEM 130 | | | |-----------------------|-----|---| | Quiz 10 - December 2, | 201 | 6 | Complete the following problems. Write your final answers in the blanks provided. 1. Determine K_c for the reaction: $N_2(g) + O_2(g) + CI_2(g) \approx 2NOCI(g)$ from the following data at 298K: (8 points) $$\begin{array}{ll} \text{${}'_{2}$ $N_{2}(g)+O_{2}(g)$} & \text{$K_{p}=1.0$ x 10^{-9}} \\ \text{NOCI}(g)+\text{${}'_{2}$ $O_{2}(g)$} & \text{NO_{2}CI}(g)$} & \text{$K_{p}=1.1$ x 10^{2}} \\ \text{NO}_{2}(g)+\text{${}'_{2}$ $CI_{2}(g)$} & \text{NO_{2}CI}(g)$} & \text{$K_{p}=0.3$} \end{array}$$ 2. You have been tasked with determining the equilibrium constant for the reaction of H_2 and S_2 gases to produce hydrogen sulfide. In a 0.500 L flask, a mixture that initially contains no S_2 and is 0.992 M H_2 and 0.0587 M H_2S comes to equilibrium at 1670 K. At equilibrium, there is 8.00×10^{-4} mol of S_2 present. What are the values for K_c and K_p at this temperature? (9 points) 3. Consider the reaction below. If the initial concentrations of H₂, F₂, and HF are 0.0100M, 1.25 M, and 2.21 M, respectively, is the system at equilibrium? If not, which way will the reaction go to achieve the equilibrium condition? Set up, but do not complete the calculation you would use to determine the equilibrium concentrations of each of the species in the reaction. You DO NOT need to arrive at a numerical answer, just get to the point where you have one algebraic expression you could solve, given additional time. Be sure to tell me what you would do with the result of your calculation. (8 points) $$H_2(g) + F_2(g) \rightleftharpoons 2HF(g)$$ K = 115 ## **Possibly Useful Information** | slope = $m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$ | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ | R = 0.08206 L atm mol ⁻¹ K ⁻¹
R = 8.314 J mol ⁻¹ K ⁻¹ | |---|--|--| | pV = nRT | ∆G = -RTInK | $K_p = K_c(RT)^{\Delta n}$ | | 18
8A
He
4.00260 | 10
Ne
20.1797 | Ar
39.948 | 36
Kr | 83.80 | 54
Xe | 131.29 | 86
Rn | (222) | | |---------------------------|---------------------|---------------|----------|---------|----------|---------|-----------|---------|------------------------------| | 17
7A | 9
F
18.9984 | CI
35.4527 | 35
Br | 79.904 | 53
I | 126.904 | 85
At | (210) | | | 16
6A | 8
O
15.9994 | S
32.066 | 34
Se | 78.96 | 52
Te | 127.60 | 84
Po | (506) | | | 15
5A | 7
N
14.0067 | P
30.9738 | 33
As | 74.9216 | 51
Sb | 121.757 | 83
Bi | 208.980 | | | 14
44 | 6
C
12.011 | Si
28.0855 | 32
Ge | 72.61 | Sn
Sn | 118.710 | 82
Pb | 207.2 | | | 13
3A | 5
B
10.811 | A1
26.9815 | 31
Ga | 69.723 | 49
In | 114.818 | 81
TI | 204.383 | | | | 5 | 17
2B | 30
Zn | 62'39 | 48
Cd | 112.411 | 80
Hg | 200.59 | | | | 7 | 11
1B | 29
Cu | 63.546 | 47
Ag | 107.868 | Au
Au | 196.967 | Rg (272) | | | 5 | 3 (| 28
Z | 58.693 | 46
Pd | 106.42 | 78
Pt | 195.08 | 110
Ds
(271) | | | C | -8B | 77
Co | 58.9332 | 45
Rh | 102.906 | 17 | 192.22 | 109
Mt
(268) | | | 0 | o | 26
Fe | 55.847 | 44
Ru | 101.07 | 76
Os | 190.23 | 108
Hs
(277) | | | 1 | 7B | 25
Mn | 54.9381 | 43
Tc | (86) | 75
Re | 186.207 | 107
Bh
(264) | | | | 9
6B | 24
Cr | 51.9961 | 42
Mo | 95.94 | 74
W | 183.84 | 106
Sg
(266) | | | U | 5B | 23
V | 50.9415 | ₽Š | 92.9064 | 73
Ta | 180.948 | 105
Db
(262) | | | - | 4B | 72
Ti | 47.88 | 40
Zr | 91.224 | 72
Hf | 178.49 | 104
Rf | | | | 3B | 21
Sc | 44.9559 | 39
Y | 88.9059 | 57
*La | 138.906 | 89
† Ac
227.028 | | 2 2A | 4
Be
9.01218 | Mg
24.3050 | 20
Ca | 40.078 | 38
Sr | 87.62 | 56
Ba | 137.327 | 88
Ra
226.025 | | 1
1A
H
1.00794 | 3
Li
6.941 | Na
22.9898 | 19
K | 39.0983 | 37
Rb | 85.4678 | Cs S2 | 132.905 | 87
Fr
(223) | | nthanido corios | 28
O | 59
Pr | 09
PN | 61
Pm | Sm 2 | 63
Fu | 79
Gd | 65
Th | 99
Dv | 67
Ho | 68
Fr | 69
Tm | 22 | |-----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------| | SCHOOL | 140.115 | 140.908 | 144.24 | (145) | 150.36 | 151.965 | 157.25 | 158.925 | 162.50 | 164.930 | 167.26 | 168.934 | 173.04 | | ctinide series | Th
Th | 91
Pa | 92
U | o N | 94
Pu | 95
Am | Cm
Cm | 97
Bk | ct % | 99
Es | 100
Fm | 101
Md | 102
No | | | 232.038 | 231.036 | 238.029 | 237.048 | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (229) | Copyright © 2007 Pearson Prentice Hall, Inc.