Complete the following problems. Write your final answers in the blanks provided.

1. Determine K_c for the reaction: $N_2(g) + O_2(g) + CI_2(g) \approx 2NOCI(g)$ from the following data at 298K: (8 points)

$$\begin{array}{ll} \frac{1}{2} \ N_2(g) + O_2(g) \rightleftarrows NO_2(g) & K_p = 1.0 \ x \ 10^{-9} \\ NOCI(g) + \frac{1}{2} \ O_2(g) \rightleftarrows NO_2CI(g) & K_p = 1.1 \ x \ 10^2 \\ NO_2(g) + \frac{1}{2} \ CI_2(g) \rightleftarrows NO_2CI(g) & K_p = 0.3 \end{array}$$

We need to rearrange reactions to make our target reaction:

$2(\frac{1}{2} N_2(g) + O_2(g) \rightleftharpoons NO_2(g))$	$K_p = (1.0 \times 10^{-9})^2$
$2(NO_2CI(g) \rightleftharpoons NOCI(g) + \frac{1}{2}O_2(g))$	$K_p = 1/(1.1 \times 10^2)^2$
$2(NO_2(g) + \frac{1}{2} Cl_2(g) \rightleftharpoons NO_2Cl(g))$	$K_p = (0.3)^2$

So, the sum of the reactions is:

Plugging in

N₂ + 2O₂ + 2NO₂Cl + 2NO₂ + Cl₂ ≈ 2NO₂ + 2NOCl + O₂ + 2NO₂Cl
N₂ + O₂ + Cl₂ ≈ 2NO₂Cl
K_p =
$$(1.0 \times 10^{-9})^2 (0.3)^2 = 7.4 \times 10^{-24}$$

 $(1.1 \times 10^2)^2$

$$K_c = K_p = 7.4 \times 10^{-24} = 1.81 \times 10^{-22}$$

(0.08206x298)⁻¹

You have been tasked with determining the equilibrium constant for the reaction of H₂ and S₂ gases to produce hydrogen sulfide. In a 0.500 L flask, a mixture that initially contains no S₂ and is 0.992 M H₂ and 0.0587 M H₂S comes to equilibrium at 1670 K. At equilibrium, there is 8.00 x 10⁻⁴ mol of S₂ present. What are the values for K_c and K_p at this temperature? (9 points) Start with a balanced chemical reaction:

$$2H_2 + S_2 \rightleftharpoons 2H_2S$$

The equilibrium concentration of $S_2 = (8.00 \times 10^{-4} \text{ mol})/0.5 \text{ L} = 0.00160 \text{ M} S_2$

We need to determine equilibrium concentrations for the other two species. Mapping out the chemistry:

	2H ₂	+	S ₂	\rightleftharpoons	2 H ₂ S
i i	0.992 ₁ M		0		0.0587 M
С	+2x		+x		-2x
е	0.992 + 2(0.00160) =		0.00160M		0.0587 - 2(0.00160) =
	0.995 ₂ M				0.0555 M

$$\begin{array}{c} \text{e} \quad 0.992 + 2(0.00160) = \quad 0.00160\text{M} \quad 0.0587 - 20\\ 0.995_2 \text{ M} \quad 0.05\\ \text{to } \text{K}_{c}: \end{array}$$

$$K_{c} = \frac{[H_{2}S]^{2}}{[H_{2}]^{2}[S_{2}]} = \frac{(0.0555)^{2}}{(0.995_{2})^{2}(0.0016)} = 1.94$$

$$K_p = K_c(RT)^{\Delta n} = 1.94(0.08206x1670)^{-1} = 0.0142$$

3. Consider the reaction below. If the initial concentrations of H₂, F₂, and HF are 0.0100M, 1.25 M, and 2.21 M, respectively, is the system at equilibrium? If not, which way will the reaction go to achieve the equilibrium condition? Set up, but do not complete the calculation you would use to determine the equilibrium concentrations of each of the species in the reaction. You DO NOT need to arrive at a numerical answer, just get to the point where you have one algebraic expression you could solve, given additional time. Be sure to tell me what you would do with the result of your calculation. (8 points)

$$H_2(g) + F_2(g) \rightleftharpoons 2HF(g)$$
 K = 115

Since we have initial concentrations of all species, we need to calculate Q first to determine the direction the reaction must go to get to equilibrium.

Q =
$$[HF]^2$$
 = $(2.21 \text{ M})^2$ = 390
[H₂][F₂] = $(0.0100 \text{ M})(1.25 \text{ M})$

Since Q>K, the reaction is product heavy and more reactants will be formed on the way to equilibrium.

	H_2	+	F ₂	\geq	2 HF
i.	0.0100 M		1.25 M		2.21 M
С	+x		+X		-2x
е	0.0100 + x		1.25 +x		2.21 - 2x

Insert these values into the equilibrium constant expression:

$$K = \frac{[HF]^2}{[H_2][F_2]} = \frac{(2.21 - 2x)^2}{(0.0100 + x)(1.25 + x)} = 115$$

The boldface expression can now be solved for x, giving two possible solutions (quadratic). After choosing the chemically sensible solution, equilibrium concentrations can be calculate: [HF] = (2.21 - 2x)M, $[H_2] = (0.0100 + x)M$, $[F_2] = (1.25 + x)M$

Possibly Useful Information

slope = m = $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	R = 0.08206 L atm mol ⁻¹ K ⁻¹ R = 8.314 J mol ⁻¹ K ⁻¹	
pV = nRT	$\Delta G = -RTInK$	$K_p = K_c(RT)^{\Delta n}$	
18 88 19 10 10 10 110 110 110 117 10	18 Ar 36 83.80 54 33.20 31.29 86 86 87 81 222	71 Lu 74.967 103 Lr (262)	
17 7A 4.4 5 18.9984 20	CI 35.4527 35.4527 35 Br 79.904 1 126.904 1 126.904 1 126.904 1 126.904 1 23 85 At (210)	70 Yb 173.04 102 No (259)	
16 6A 8 15,994	16 32.066 32.066 78.96 78.96 78.96 127.60 127.60 (209)	69 Tm 168.934 101 Md (258)	
15 5A 15. 14.0067	15 15 30.9738 33 33 74.9216 51 51 51 121.757 121.757 83 83 83 83 83 83 83 83 83 83 83 83 83	68 Er 167.26 Fm (257)	
14 4A 6 6 12,011	14 Si 28.0855 32 Ge 50 50 118.710 118.710 118.710 207.2 207.2	67 Ho 164.930 99 ES (252)	
13 3A 5 8 10811	13 26,9815 26,9815 69,723 69,723 69,723 114,818 114,81	66 Dy 162.50 98 98 (251)	
	12 2B 2B 2B 65.39 65.39 65.39 65.39 65.39 65.39 112.411 112.411 112.411 80 Hg 200.59 200.59	65 Tb 97 Bk (247) Hall, In	
1	11 1B 29 63.546 63.546 63.546 63.546 107.8688 107.868 107.868 107.868 107.868 107.868 107.868	64 Gdd 157.25 96 Cm (247)	
	10 28 88.693 58.693 58.693 106.42 106.42 195.08 195.08 195.08 195.08 105 110 DS	63 Eu 151.965 Am (243) rson Pr	
	9 8B 8B- 83 58,9332 58,9332 58,9332 58,9332 102,906 1109 1109 1109 Mft (268)	62 Sm 150.36 94 Pu (244) 07 Pea	
	8 26 Fe 55.847 55.847 101.07 101.07 100.05 190.23 190.23 190.23 190.23 190.23 190.23 190.23 108 108 108 108 108 108 108 108 108 108	61 Pm (145) 93 Np 237.048	
	7 7B 7B 84,9381 54,9381 54,9381 75 84,3 77 75 88 (98) 75 75 75 86 (98) 75 75 86 (98) 75 75 75 75 75 75 75 75 75 75 76 76 76 76 76 76 76 76 76 76 76 77 76 76	60 Nd 144.24 0 238.029 2029 7009Yrig	
	6 6B 51.9961 51.9961 95.94 95.94 183.84 183.84 183.84 183.84 106 58 8 28 8 28 8 28 8 28 8 26 10 10 10 10 10 10 10 10 10 10 10 10 10	59 Pr 140.908 91 Pa 231.036	
	5 5 5 5 5 5 5 8 0.9415 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	58 Ce 140.115 90 Th 2232.038	
	4B 4B 47 40 72 40 71 72 72 178.49 91.224 91.224 178.49 72 178.49 72 72 72 104 72 104 72 72 72 72 72 72 72 72 72 72 72 72 72		
	3B 3B 21 5c 44.9559 44.9559 88.9059 88.9059 57 138.906 138.906 138.906 89 138.906 257.028	le series	
2 2A 9.01218	12 Mg 24.3050 24.3050 20 20 20 21.3050 87.62 87.62 87.62 137.327 137.327 88 88 88 88 88 88 88 88	tinide s	
1 1 1 1 1 1 1 1 00794 1 100794 1 100794	11 Na 22.9898 39.0983 39.0983 37 Rb 85.4678 85.4678 85.4678 132.905 132.905 132.905 132.905 132.905 132.905 132.505 132.55 12.55 1	*Lai †Aci	