a. the equilibrium constant for a reaction is small. b. there is no clear slow step in a proposed reaction

answers to discussion questions.

Part 0: Warmup. 4 points each

Chem 130

100 Points

Exam 4, Ch 14 and 15

b. there is no clear slow step in a proposed reaction mechanism.c. a reaction occurs through a single-step mechanism.

1. The steady-state approximation is most useful when

- d. the concentration of reactants is small compared to the equilibrium constant.
- 2. The pressure of a reaction vessel that contains an equilibrium mixture in the reaction $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$ is increased. When equilibrium is reestablished:
 - a. the amount of Cl_2 will have increased.
 - b. the amount of SO₂ will have decreased.
 - c. the amounts of SO_2 and CI_2 will have remained the same.
 - d. the amounts of all SO₂, CI_2 , and SO_2CI_2 will have decreased..
- 3. Consider the reaction coordinate diagram below. From the diagram, we can conclude:

Reaction Progress

- a. The reaction is endothermic.
- b. The reaction occurs by a two-step mechanism.
- c. The first step of the mechanism is the rate-determining step.
- d. The reaction is nonspontaneous.
- 4. For the reaction CO(g) + 2H₂ (g)
 CH₃OH(g) K_c = 14.5. If 5.00 mol CO, 2.00 mol H₂ and 3.00 mol of CH₃OH are brought together and allowed to react in a 2.0 L container, which of the following describes the composition of the system at equilibrium?

1

- a. Some CO and H_2 will have been consumed to make more CH_3OH .
- b. Some CH_3OH will have been consumed to make more CO and H_2
- c. The amounts of CO, H₂, and CH₃OH will be unchanged from their initial values.
- d. There is not enough information to determine the equilibrium composition.

Answer _____

Answer _____

Answer _____

Answer _____

D

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your

Part I Kinetics. Answer <u>three (3)</u> of problems 5-8. Clearly mark the problems you do not want graded. 14 points each.

 Consider the data below. The data corresponds to the reaction below and shows dependence of concentration of A on time in experiments run at three temperatures. Assuming you know the reaction to be first order in A, <u>describe</u> how you could determine the activation energy for the reaction. No calculations are necessary. Feel free to include appropriate diagrams.

	T = 298 K	T = 348 K	T = 398 K
Time (sec)	[A] (M)	[A] (M)	[A] (M)
0	0.1000	0.1000	0.1000
1	0.0999	0.0991	0.0940
2	0.0999	0.0983	0.0883
8	0.0995	0.0932	0.0609
32	0.0980	0.0755	0.0137

2A	\rightarrow	В	+	С

6. Experiment has shown that the rate law for the reaction $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$ is Rate = k[NO][Cl₂]. One proposed mechanism for this process is shown below, with the second step being rate-determining. Is this a reasonable mechanism for the reaction? Justify your decision.

$$\begin{array}{rcl} \mathsf{NO} + \mathsf{Cl}_2 & \underset{k_1}{\overset{k_1}{\underset{k_1}{\longrightarrow}}} & \mathsf{NOCl}_2 \ (\mathsf{fast}) \\ \\ \mathsf{NOCl}_2 + \mathsf{NO} & \overset{k_2}{\xrightarrow{}} & \mathsf{2NOCl} \ (\mathsf{slow}) \end{array}$$

7. The decomposition of hydrogen peroxide (H₂O₂) to liquid water and oxygen gas is a <u>spontaneous</u> process, but occurs <u>slowly</u>, allowing for a reasonable shelf-life for peroxide solutions. In the presence of a catalyst (like the iron in your blood), the decomposition is much <u>more rapid</u>. Draw and correctly label reaction coordinate diagrams that represent each of the two situations and describe how each diagram reflects the thermodynamics and kinetics of the situation.

8. In our kinetics experiment we used the *isolation method* (sometimes called *pseudo-order* kinetics) to determine the rate law for the reaction of crystal violet with hydroxide ion. Describe how the isolation method allows the determination of the reaction orders for multiple reactants, as well as the overall rate constant for a reaction. You may wish to use the CV reaction as an example.

Part II Equilibrium. Answer <u>three (3)</u> of problems 9-12. Clearly mark the problems you do not want graded. 14 points each

9. What do we mean when we say a system has *come to equilibrium*? Describe the equilibrium condition and why we don't use a single headed arrow when we write equilibria. What does a small equilibrium constant mean in terms of thermodynamics?

- 10. Suppose the reaction system below has already reached equilibrium. Predict the effect of the following changes on the system. Justify your predictions with a brief statement. $UO_2(s) + 4HF(g) \rightleftharpoons UF_4(g) + 2H_2O(g)$
 - a. More UO_2 is added to the system.
 - b. The reaction is performed in a glass reaction vessel and the HF reacts with the glass.
 - c. Water vapor is removed.
 - d. The volume is increased.

11. A mixture consisting of 0.150 mol H_2 and 0.150 mol I_2 is brought to equilibrium at 445°C in a 1.50 L flask. What are the equilibrium concentrations of each species?

 $H_2(g) + I_2(g) \Rightarrow 2HI(g)$ $K_c = 50.2 \text{ at } 445^{\circ}C$

12. For the reaction below, an equilibrium mixture contains 0.550 mol of each of the products (carbon dioxide and hydrogen gas) and 0.200 mol of each of the reactants (carbon monoxide and water vapor) in a 1.00-L container. How many moles of carbon dioxide would have to be added at constant temperature and volume to increase the amount of carbon monoxide to 0.300 mol once equilibrium has been reestablished?

 $H_2O(g) + CO(g) \Rightarrow H_2(g) + CO_2(g)$

Possibly Useful Information

slope = m = $\frac{\Delta y}{\lambda} = \frac{y_2 - y_1}{\lambda}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{b^2 - 4ac}$	$R = 0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1}$
$\Delta \mathbf{x} \mathbf{x}_2 - \mathbf{x}_1$	2a	R = 8.314 J mol ⁻ ' K ⁻ '
pV = nRT	$\Delta G = -RTInK$	$K_{p} = K_{c}(RT)^{\Delta n}$
$k = Ae^{-E_{a/RT}}$	$\ln k = -\left(\frac{E_a}{R}\right)\left(\frac{1}{T}\right) + \ln A$	$ln\frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$
rate = $k[A]^1$	$[A]_t = -kt + [A]_0$	$t_{1/2} = [A]_0/2k$
rate = $k[A]^2$	$ln[A]_t = -kt + ln[A]_0$	$t_{1/2} = 1/(k[A]_0)$
rate = $k[A]^0$	$\frac{1}{\left[A\right]_{t}} = kt + \frac{1}{\left[A\right]_{0}}$	$t_{1/2} = 0.693/k$

To save some calculation time, you may round all atomic masses to
two (2) decimal points.

1																	10
T																	18
1A																	8A
1	2											13	14	15	16	17	2
1 00794	24											24	1 4	E A	6.4	7.4	He
1.00794	211											3A	4A	ЭA	0A	7A	4.00260
3	4											5	6	7	8	9	10
LI	De											D 10.011	12.011	14.000	15 0004	F 10.0004	INC 1707
0.941	9.01218											10.811	12.011	14.0067	15.9994	18.9984	20.1797
11 No	12 Ma	3	4	5	6	7	8	9	10	11	12	13	14	15 P	16 S	17 Cl	18 Ar
1 N dl	24 3050	3B	4B	5B	6B	7B		-8B-		1 B	2B	76.0815	28.0855	30.9738	32.066	35.4527	30.948
10	20	01	22	22	24	25	26	07	20	20	20	20.0010	20.0000	22	24	00.1047	37.740
K	Ca	Sc.	Ti	V	Cr.	Mn	Ee Ee	ć	Ni	C11	7n	Ga	Ge	33 A c	Se Se	Br	Kr
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9381	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Ŷ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ĩ	Xe
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.818	118.710	121.757	127.60	126.904	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.905	137.327	138.906	178.49	180.948	183.84	186.207	190.23	192.22	195.08	196.967	200.59	204.383	207.2	208.980	(209)	(210)	(222)
87	88	.89	104	105	106	107	108	109	110	111							
Fr	Ra	[†] Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	226.025	227.028	(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)							

*Lanthanide series	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
[†] Actinide series	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Copyright © 2007 Pearson Prentice Hall, Inc.