Chem 130 Exam 2, Ch 4-6 100 Points

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Name____ October 12, 2016

Part 0: Warmup. 4 points each

- 1. Under what conditions is Cl₂ likely to behave most like an ideal gas?
 - a. 100°C and 10.0 atm
 - b. 0°C and 0.50 atm
 - c. 200°C and 0.50 atm
 - d. 400° C and 10.0 atm
- 2. To precipitate Zn^{2+} from a solution of $Zn(NO_3)_2$, add
 - a. NH₄Cl
 - b. MgBr₂
 - c. K_2CO_3
 - d. (NH₄)₂SO₄

Part I: Complete all of problems 3-8

- 3. The terms **strong electrolyte** and **weak electrolyte** are used in multiple contexts. Discuss how these terms are used in each of the contexts below. Use a maximum of three sentences per context. (8 points)
 - a. When describing a compound:
 - b. When describing a solution:

Species	Name	Name Oxidation States			Water Soluble? (Y/N)	
Co(ClO ₄) ₃		Co =	CI =	O =		
Zn ₃ (PO ₄) ₂		Zn =	0 =	P =		

4. Complete the following table. (12 points)

Answer_____

Answer _____

- 5. Write balanced overall reactions and net ionic equations for each of the following: Indicate the state (s, ℓ , g, aq) of each of the reactants and products. (12 points)
 - a. Aqueous sulfuric acid is mixed with aqueous ammonium hydroxide

Balanced Reaction: (4)

Net Ionic Equation: (2)

b. Aqueous lead (II) nitrate is mixed with aqueous lithium sulfiide

Balanced Reaction: (4)

Net Ionic Equation: (2)

6. How does the kinetic-molecular theory of gases help explain why a helium-filled balloon shrinks if it is taken outside on a cold winter day? (10 points)

7. A 7.55 g sample of barium hydroxide is added to 125 mL of a 0.762 M nitric acid solution. After any reaction is complete, with the solution still be acidic? (10 points)

Answer_____

8. A 1.27 g sample of an oxide of nitrogen, believed to be either N₂O or NO, occupies a volume of 1.07 L at 25°C and 737 mm Hg. Which oxide is it?(10 points)

Answer_

Part II. Answer three (3) of problems 9-12. Clearly mark the problem you do not want graded. 12 points each.

9. You can dissolve an aluminum soft drink can in an aqueous base such as potassium hydroxide.

2 Al (s) + 2 KOH (aq) + 6 H₂O (ℓ) \rightarrow 2 KAI(OH)₄ (aq) + 3 H₂ (g)

a. If you place 2.05 g of aluminum in a beaker with 125 mL of 1.25 M KOH, will any aluminum remain? Justify your answer with a calculation, no calculation, no credit. (8 points)

b. After the reaction is complete, what is the concentration of KAI(OH)₄ in moles per liter? You may assume a final solution volume of 125 mL. (4 points)

10. At elevated temperatures, solid sodium chlorate (NaClO₃, molar mass 106.44 g/mol) decomposes to produce sodium chloride and oxygen gas. In an experiment, a 0.8765 g sample of impure sodium chlorate was heated until the production of oxygen ceased. The O₂ gas was collected over water. The collected gas occupied a volume of 57.2 mL at 23.0°C and 734 mm Hg. Calculate the mass percentage of sodium chlorate in the original sample. Assume that none of the impurities produce O₂.

Answer_

11. Redox reactions:

a. Balance the following reaction in acidic solution. (10 points) $BrO_3^-(aq) + H_2O_2(aq) \rightarrow Br_2(\ell) + O_2(g)$

b. Permanganate ion can oxidize cyanide ion in acidic solution by the reaction below. Write the corresponding balanced reaction that would occur in basic solution. (2 points) $2 \text{ MnO}_4^- + 3 \text{ CN}^- + 2 \text{ H}^+ \rightarrow 2 \text{ MnO}_2 + 3 \text{ OCN}^- + \text{H}_2\text{O}$

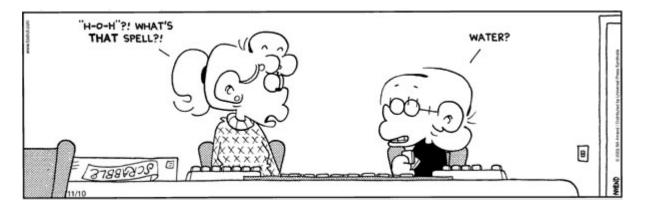
12. Answer the following questions related to the combustion of ethanol. Assume the ideal gas law applies.

 $2 \text{ CH}_3\text{CH}_2\text{OH}(\ell) + 6 \text{ O}_2(g) \rightarrow 4 \text{ CO}_2(g) + 6 \text{ H}_2\text{O}(g)$

a. If 5.00 g of ethanol (molar mass 46.07 g/mol) is burned in a 2.00 L container filled with oxygen at 2.08 atm and 100°C, will be the final pressure in the container? (8 points)

Answer_____

b. What volume would the gas produced by this reaction occupy at STP? (4 points)


Answer_____

Possibly Useful Information

R = 0.08206 L atm mol ⁻¹ K ⁻¹	K = °C + 273.15			
1 atmosphere = 760 Torr = 760 mm Hg	$\left(P + a\left(\frac{n}{V}\right)^2\right)\!\!\left(V - bn\right) = nRT$			
P _{total} V =n _{total} RT	$P_{A} = X_{a}P_{total}$			
$N_a = 6.02214 \times 10^{23} \text{mol}^{-1}$	$\frac{P_{1}V_{1}}{n_{1}T_{1}} = \frac{P_{2}V_{2}}{n_{2}T_{2}}$			
% by mass = $\frac{\text{g component}}{100 \text{ g sample}}$	d = m/v			

Vapor Pressure of Water at Various Temperatures					
Temperature (°C)	Vapor Pressure (mmHg)				
15.0	12.79				
17.0	14.53				
19.0	16.48				
21.0	18.65				
23.0	21.07				
25.0	23.76				
30.0	31.82				
50.0	92.51				

Copyright © 2007 Pearson Prentice Hall, Inc.

[†] Act	*Lar	87 Fr (223)	55 Cs 132.905	37 Rb 85.4678	19 K 39.0983	11 Na 22.9898	3 Li 6.941	1 H 1.00794	1 1A
[†] Actinide series	thanid	88 Ra 226.025	56 Ba 137.327	38 Sr 87.62	20 Ca 40.078	12 Mg 24.3050	4 Be 9.01218	2 2A	
eries	*Lanthanide series	89 †Ac 227.028	57 *La 138.906	39 Y 88.9059	21 Sc 44.9559	3B			а
		104 Rf (261)	72 Hf 178.49	40 Zr 91.224	22 Ti 47.88	4B			sav II atc
90 Th 232.038	58 Ce 140.115	105 Db (262)	73 Ta 180.948	41 Nb 92.9064	23 V 50.9415	5B 23			e so omic
91 Pa 231.036	59 Pr 140.908	106 Sg (266)	74 W 183.84	42 Mo 95.94	24 Cr 51.9961	6B			me o mas
92 U 238.029	60 Nd 144.24	107 Bh (264)	75 Re 186.207	43 Tc (98)	25 Mn 54.9381	7B			alcu; ses
93 Np 237.048	61 Pm (145)	108 Hs (277)	76 Os 190.23	44 Ru 101.07	26 Fe 55.847	\sim			To save some calculation time, you may round all atomic masses to two (2) decimal points.
94 Pu (244)	62 Sm 150.36	109 Mt (268)	77 Ir 192.22	45 Rh 102.906	27 Co 58.9332	9 			n tim /0 (2
95 Am (243)	63 Eu 151.965	110 Ds (271)	78 Pt 195.08	46 Pd 106.42	28 Ni 58.693	10			ne, yo)) dec
96 Cm (247)	64 Gd 157.25	111 Rg (272)	79 Au 196.967	47 Ag 107.868	29 Cu 63.546	11 1B			ou m
97 Bk (247)	65 Tb 158.925		80 Hg 200.59	48 Cd 112.411	30 Zn 65.39	12 2B			iay r
98 Cf (251)	66 Dy 162.50		81 Tl 204.383	49 In 114.818	31 Ga 69.723	13 Al 26.9815	5 B 10.811	13 3A	ounc nts.
99 Es (252)	67 Ho 164.930		82 Pb 207.2	50 Sn 118.710	32 Ge 72.61	14 Si 28.0855	6 C 12.011	14 4A	_
100 Fm (257)	68 Er 167.26		83 Bi 208.980	51 Sb 121.757	33 As 74.9216	15 P 30.9738	7 N 14.0067	15 5A	
101 Md (258)	69 Tm 168.934		84 Po (209)	52 Te 127.60	34 Se 78.96	16 S 32.066	8 O 15.9994	16 6A	
102 No (259)	70 Yb 173.04		85 At (210)	53 I 126.904	35 Br 79.904	17 Cl 35.4527	9 F 18.9984	17 7A	
103 Lr (262)	71 Lu 174.967		86 Rn (222)	54 Xe 131.29	36 Kr 83.80	18 Ar 39.948	10 Ne 20.1797	2 He 4.00260	18 8A

Copyright © 2007 Pearson Prentice Hall, Inc.