Name				
September 21, 2016				
	Name September 21, 2016			

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part 0: Warmup. 4 points each

- 1. Which of the following aspects of Dalton's atomic theory remains unchanged in our current understanding:
 - a. Atoms are indivisible.
 - b. All atoms of a particular element are identical.
 - c. Compounds are the result of a combination of two or more Answer ______ different kinds of atoms in fixed ratios.
 - d. None of the above.
- 2. A reaction mixture contains 1.0 mol $CaCN_2$ and 1.0 mol H_2O . The maximum number of moles NH_3 produced in the reaction below is

 $CaCN_2(s) + 3H_2O(I) \rightarrow CaCO_3(s) + 2NH_3(g)$

- a. 3.0
- b. 2.0
- c. Between 1.0 and 2.0

Answer_____

d. Less than 1.0

Part I: Complete all of problems 3-10

- 3. Identify four elements that exist naturally as diatomic molecules. (4 points)
- 4. Gallium is solid at 20°C. There are 1.16 x 10²¹ atoms in 134 mg of gallium at this temperature. Above 30°C, gallium melts (it melts in your hand!). How many atoms are there in 134 mg of gallium at 40°C? Briefly justify your answer. (4 points)

5. Does calcium tend to form anions or cations? What is the charge on the ion? Briefly justify your answer. (4 points)

6. Complete the following table. (12 points)

Symbol		¹³³ Cs⁺	
# of protons	34		48
# of neutrons	45		64
# of electrons			48
Charge	-2		
Name			

7. Name the following compounds or provide the correct formula for the given names. (16 points)

Mo(NO ₃) ₄	
B_2Br_4	
Sr(OH) ₂	
(NH ₄) ₂ S	
xenon hexafluoride	
magnesium perchlorate	
chromium (VI) cyanide	
sulfuric acid	
	Mo(NO ₃) ₄ B ₂ Br ₄ Sr(OH) ₂ (NH ₄) ₂ S xenon hexafluoride magnesium perchlorate chromium (VI) cyanide sulfuric acid

 The atomic mass of gold (Au) is 196.97 amu and all gold atoms in a naturally occurring sample of gold have this mass. The atomic mass of silver (Ag) is 107.87 amu, but no silver atoms in a naturally occurring sample of silver have this mass. Explain this observation. (8 points)

- 9. Write balanced reactions, specifying the state for all reactants and products. (8 points)
 - a. Solid barium hydroxide octahydrate reacts with solid ammonium chloride to produce aqueous barium chloride, aqueous ammonium hydroxide and liquid water.

b. Aqueous potassium sulfide reacts with aqueous iron (III) nitrate to produce aqueous potassium nitrate and solid iron (III) sulfide.

10. A brand new penny is 19.05 mm in diameter and 1.52 mm thick and is 97.5% zinc and 2.5% copper by mass. Assuming the penny has the same density as zinc (7.13 g/cm³), how many copper atoms are in a new penny? You may assume the penny is a cylinder with a volume of πr^2 h, where $\pi = 3.14159$, r is the radius and h is the thickness.(8 points)

Part II. Answer three (3) of problems 11-14. Clearly mark the problem you do not want graded. 10 points each.

11. Nitrogen gas can be prepared by passing gaseous ammonia (NH₃) over solid copper (II) oxide at high temperatures. The other products of the reaction are solid copper and water vapor. In a certain experiment, a reaction mixture containing 18.1 g ammonia and 90.4 g copper oxide produces 6.63 g nitrogen gas. What is the percent yield for the reaction?

Answer_

12. The Ostwald process, used for the commercial production of nitric acid, involves the three steps below. How many kilograms of ammonia (NH₃) are required to produce 1.00 kilograms of nitric acid if the percent yield for the entire process is 73.2%? $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$

 $3NO_2(g) + H_2O(\ell) \rightarrow 2HNO_3(aq) + NO(g)$

Answer_

13. Isobutylene contains only carbon and hydrogen and is an important industrial chemical used in the production of a variety of products, ranging from antioxidants to polymers. Combustion of 1.00 grams of isobutylene results in the production of 3.14 grams of carbon dioxide and 1.28 grams of water. If the molar mass of isobutylene is 56.106 g/mol, what is its molecular formula?

Answer_____

14. A compound that contains only potassium, chromium and oxygen was analyzed. If was found that the compound contained 26.58% potassium and 35.45% chromium by mass. What is the formula for this compound?

Answer_____

Possibly Useful Information

% by mass	$=\frac{\mathrm{gco}}{100}$	mponent g sample		d	= m/v			N _A	= 6.022 x	10 ²³
	⁺ Act	*Lan	87 Fr (223)	55 Cs 132.905	37 Rb 85.4678	19 K 39.0983	Na 22.9898	3 Li 6.941	1A 1 H 1.00794	
	inide se	ıthanide	88 Ra 226.025	56 Ba 137.327	38 Sr 87.62	20 Ca 40.078	Mg 24.3050	4 Be 9.01218	2 2A	
	eries	e series	89 †Ac 227.028	57 *La 138.906	39 Y 88.9059	21 Sc 44.9559	3B)		a
			104 Rf (261)	72 Hf 178.49	40 Zr 91.224	22 Ti 47.88	4B	2		sav II ato
	90 Th 232.038	58 Ce 140.115	105 Db (262)	73 Ta 180.948	41 Nb 92.9064	23 V 50.9415	5B 2B	1		e soi omic
O	91 Pa 231.036	59 Pr 140.908	106 Sg (266)	74 W 183.84	42 Mo 95.94	24 Cr 51.9961	6B	N		me c mas
opyrigh	92 U 238.029	60 Nd 144.24	107 Bh (264)	75 Re 186.207	43 Tc (98)	25 Mn 54.9381	7B	1		alcu ses t
nt © 200	93 Np 237.048	61 Pm (145)	108 Hs (277)	76 Os 190.23	44 Ru 101.07	26 Fe 55.847	$\int \alpha$	þ		lation to tw
)7 Pear	94 Pu (244)	62 Sm 150.36	109 Mt (268)	77 Ir 192.22	45 Rh 102.906	27 Co 58.9332	-8B-	þ		n tim 0 (2)
'son Pr	95 Am (243)	63 Eu 151.965	110 Ds (271)	78 Pt 195.08	46 Pd 106.42	28 Ni 58.693		2		e, yo) dec
entice	96 Cm (247)	64 Gd 157.25	111 Rg (272)	79 Au 196.967	47 Ag 107.868	29 Cu 63.546	11 1B	2		bu m
Hall, Inc	97 Bk (247)	65 Tb 158.925		80 Hg 200.59	48 Cd 112.411	30 Zn 65.39	112 213	5		lay ro
ò	98 Cf (251)	66 Dy 162.50		81 Tl 204.383	49 In 114.818	31 Ga 69.723	AI 26.9815	5 B 10.811	13 3A	ound nts.
	99 Es (252)	67 Ho 164.930		82 Pb 207.2	50 Sn 118.710	32 Ge 72.61	28.0855	6 C 12.011	14 4A	
	100 Fm (257)	68 Er 167.26		83 Bi 208.980	51 Sb 121.757	33 As 74.9216	P 30.9738	7 N 14.0067	15 5A	
	101 Md (258)	69 Tm 168.934		84 Po (209)	52 Te 127.60	34 Se 78.96	32.066	8 0 15.9994	16 6A	
	102 No (259)	70 Yb 173.04		85 At (210)	53 I 126.904	35 Br 79.904	CI 35.4527	9 F 18.9984	17 7A	
	103 Lr (262)	71 Lu 174.967		86 Rn (222)	54 Xe 131.29	36 Kr 83.80	Ar 39.948	10 Ne 20.1797	8A 2 He 4.00260	18