Chem 130	
Exam 1, Ch	1-4
100 Points	

Name	
September 21, 2016	

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part 0: Warmup. 4 points each

- 1. Which of the following aspects of Dalton's atomic theory remains unchanged in our current understanding:
 - a. Atoms are indivisible.
 - b. All atoms of a particular element are identical.
 - c. Compounds are the result of a combination of two or more Answer ____c ___different kinds of atoms in fixed ratios.
 - d. None of the above.
- 2. A reaction mixture contains 1.0 mol CaCN₂ and 1.0 mol H₂O. The maximum number of moles NH₃ produced in the reaction below is

$$CaCN_2(s) + 3H_2O(l) \rightarrow CaCO_3(s) + 2NH_3(g)$$

- a. 3.0
- b. 2.0
- c. Between 1.0 and 2.0

d	1			
	C	d	d	d

d. Less than 1.0

Part I: Complete all of problems 3-10

3. Identify four elements that exist naturally as diatomic molecules. (4 points)

hydrogen, nitrogen, oxygen, fluorine, chlorine, bromine, iodine (any 4 will do)

4. Gallium is solid at 20°C. There are 1.16 x 10²¹ atoms in 134 mg of gallium at this temperature. Above 30°C, gallium melts (it melts in your hand!). How many atoms are there in 134 mg of gallium at 40°C? Briefly justify your answer. (4 points)

Since all that has occurred is a phase change, the number of atoms will not change, therefore there are 1.16×10^{21} atoms!

5. Does calcium tend to form anions or cations? What is the charge on the ion? Briefly justify your answer. (4 points)

Since calcium is a Group 2A element, it will form cations with +2 charge because losing two electrons allows it to reach a noble gas electron configuration. Were it to become an anion, it would need to gain 6 electrons, which is much less favorable energetically.

6. Complete the following table. (12 points)

Symbol	⁷⁹ Se ²⁻	¹³³ Cs ⁺	¹¹² Cd
# of protons	34	55	48
# of neutrons	45	78	64
# of electrons	36	54	48
Charge	-2	+1	0
Name	selenide-79	cesium-133 ion	cadmium-112

7. Name the following compounds or provide the correct formula for the given names. (16 points)

a.	Mo(NO ₃) ₄	molybdenum (IV) nitrate
b.	B_2Br_4	diboron tetrabromide
C.	Sr(OH) ₂	strontium hydroxide
d.	(NH ₄) ₂ S	ammonium sulfide
e.	xenon hexafluoride	XeF ₆
f.	magnesium perchlorate	Mg(CIO ₄) ₂
g.	chromium (VI) cyanide	Cr(CN) ₆
h.	sulfuric acid	H ₂ SO ₄

8. The atomic mass of gold (Au) is 196.97 amu and all gold atoms in a naturally occurring sample of gold have this mass. The atomic mass of silver (Ag) is 107.87 amu, but no silver atoms in a naturally occurring sample of silver have this mass. Explain this observation. (8 points)

Since all gold atoms have the same mass, this implies that there is only a single gold isotope (¹⁹⁷Au), since the atomic mass is the weighted average of the masses and abundances of all of the isotopes. Note that we don't say gold has *no isotopes*. Since no silver atom has a mass that corresponds to its atomic mass, there must be more than one isotope of silver. We can't say how many with the information that we are given. The best that we can say is that there are at least two silver isotopes and that the weighted average of their masses and abundances must be 107.87 amu

- 9. Write balanced reactions, specifying the state for all reactants and products. (8 points)
 - a. Solid barium hydroxide octahydrate reacts with solid ammonium chloride to produce aqueous barium chloride, aqueous ammonium hydroxide and liquid water.

$$Ba(OH)_2 \cdot 8H_2O(s) + 2NH_4CI(s) \rightarrow BaCI_2(aq) + 2NH_4OH(aq) + 8H_2O(\ell)$$

b. Aqueous potassium sulfide reacts with aqueous iron (III) nitrate to produce aqueous potassium nitrate and solid iron (III) sulfide.

$$3K_2S(aq) + 2Fe(NO_3)_3(aq) \rightarrow 6KNO_3(aq) + Fe_2S_3(s)$$

10. A brand new penny is 19.05 mm in diameter and 1.52 mm thick and is 97.5% zinc and 2.5% copper by mass. Assuming the penny has the same density as zinc (7.13 g/cm³), how many copper atoms are in a new penny? You may assume the penny is a cylinder with a volume of $\pi r^2 h$, where $\pi = 3.14159$, r is the radius and h is the thickness.(8 points)

First find the volume of the penny:

d = 2r = 19.05 mm = 1.905 cm, so the radius is 1.905 cm/2 = 0.9525 cm
$$V = \pi r^2 h = 3.14159x(0.9525 \text{ cm})^2 x 0.152 \text{ cm} = 0.4332 \text{ cm}^3$$

Now that we know the volume, we use the density to find the mass:

$$0.4332 \text{ cm}^3 \times \underline{7.13 \text{ g penny}} = 3.089 \text{ g penny}$$

But, only 2.5 % of this mass is copper:

$$3.089 \frac{g \text{ penny}}{100 \frac{g \text{ penny}}{g \text{ penny}}} \times \frac{2.5 \frac{g \text{ Cu}}{s}}{63.456 \frac{g \text{ Cu}}{g}} \times \frac{6.022 \times 10^{23} \text{ atoms Cu}}{1 \frac{g \text{ mol Cu}}{s}} = 7.3 \times 10^{20} \text{ atoms Cu}$$

Part II. Answer three (3) of problems 11-14. Clearly mark the problem you do not want graded. 10 points each.

11. Nitrogen gas can be prepared by passing gaseous ammonia (NH₃) over solid copper (II) oxide at high temperatures. The other products of the reaction are solid copper and water vapor. In a certain experiment, a reaction mixture containing 18.1 g ammonia and 90.4 g copper oxide produces 6.63 g nitrogen gas. What is the percent yield for the reaction?

$$2NH_3 + 3CuO \rightarrow N_2 + 3Cu + 3H_2O$$

We need to find the limiting reactant and theoretical yield:

$$18.1 \text{ g NH}_3 \quad \text{x} \quad \underbrace{1 \text{ mol NH}_3}_{17.03 \text{ g NH}_3} \quad \text{x} \quad \underbrace{1 \text{ mol N}_2}_{2 \text{ mol NH}_3} \quad \text{x} \quad \underbrace{28.01 \text{ g N}_2}_{1 \text{ mol N}_2} = 14.86 \text{ g N}_2$$

90.4 g CuO
$$\times$$
 1 mol CuO \times 1 mol CuO \times 3 mol CuO \times 28.01 g N₂ = 10.61 g N₂

Therefore CuO is the limiting reactant and the theoretical yield is 10.61 g N₂.

% yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}}$$
 x 100% = $\frac{6.63 \text{ g N}_2}{10.61 \text{ g N}_2}$ x 100% = 62.5 % yield

Answer 62.5 % yield

12. The Ostwald process, used for the commercial production of nitric acid, involves the three steps below. How many kilograms of ammonia (NH₃) are required to produce 1.00 kilograms of nitric acid if the percent yield for the entire process is 73.2%?

$$\begin{array}{c} 4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g) \\ 2NO(g) + O_2(g) \rightarrow 2NO_2(g) \\ 3NO_2(g) + H_2O(\ell) \rightarrow 2HNO_3(aq) + NO(g) \end{array}$$

If 1.00 kg is only 73.2 % yield, we first need to figure out the theoretical yield for the reaction:

Therefore

$$73.2\% = 1.00 \text{ kg}$$
 x 100% And the theoretical yield is 1.36_6 kg theoretical yield

$$1.36_6 \text{ kg HNO}_3 \text{ x } \frac{10^3 \text{ g}}{1 \text{ kg}} \text{ x } \frac{1 \text{ mol HNO}_3}{63.01 \text{ g HNO}_3} = 21.681 \text{ mol HNO}_3$$

21.681 mol HNO₃
$$\times$$
 3 mol $\frac{NO_2}{2 \text{ mol HNO}_3}$ \times 2 mol NO₂ \times 4 mol NH₃ = 32.522 mol NH₃

32.522 mol NH₃ x
$$\frac{17.031 \text{ g-NH}_3}{1 \text{ mol NH}_3}$$
 x $\frac{1 \text{ kg}}{10^3 \text{ g}}$ = 0.5539 kg NH₃ = **0.554 kg NH**₃

Answer_____0.554 kg NH₃_____

13. Isobutylene contains only carbon and hydrogen and is an important industrial chemical used in the production of a variety of products, ranging from antioxidants to polymers. Combustion of 1.00 grams of isobutylene results in the production of 3.14 grams of carbon dioxide and 1.28 grams of water. If the molar mass of isobutylene is 56.106 g/mol, what is its molecular formula?

So, a start at the empirical formula is $C_{0.07134}H_{0.1422}$. Since these are not whole number subscripts, we divide by the smallest one to produce C_1H_2 or CH_2 as the empirical formula. If this were also the molecular formula, the formula mass (14.03 g/mol) would match the molar mass, but it does not. Relating the molar mass to the formula mass tells us how many empirical formula "units" are in the molecular formula:

$$\frac{56.106 \text{ g/mol}}{14.03 \text{ g/mol}} = 3.999$$

This implies that our molecular formula contains four times as many atoms of each element as the empirical formula. Therefore the molecular formula is C_4H_8

Aliswei 6408	Answer	C ₄ H ₈	
--------------	--------	-------------------------------	--

14. A compound that contains only potassium, chromium and oxygen was analyzed. If was found that the compound contained 26.58% potassium and 35.45% chromium by mass. What is the formula for this compound?

Given the percent composition, in 100 grams of the compound, there would be $26.58 \, g \, K$, $35.45 \, g \, Cr$ and 100- $(26.58+35.45) = 37.97 \, g \, O$. We need a ratio of moles to determine the formula.

$$26.58 \text{ g-K} \times \frac{1 \text{ mol K}}{39.10 \text{ g-K}} = 0.6798 \text{ mol K}$$

$$35.45 \text{ g-Cr} \times \frac{1 \text{ mol Cr}}{51.99_6 \text{ g-K}} = 0.6818 \text{ mol Cr}$$

$$37.97 \text{ g-O} \times \frac{1 \text{ mol O}}{15.99_9 \text{ g-O}} = 2.373 \text{ mol O}$$

So, a first shot at a formula is $K_{0.6798}Cr_{0.6818}O_{2.373}$. Dividing by the smallest subscript, the formula becomes $KCrO_{3.49}$. We now double each subscript to produce whole number values, making the formula $K_2Cr_2O_7$.

			Poss	sibly Us	seful In	formati	ion			
% by mass	=	mponent g sample		d	= m/v			N _A	= 6.022	2 x 10 ²³
	†Act	*Lar	87 Fr (223)	55 Cs 132.905	37 Rb 85.4678	19 K 39.0983	Na 22.9898	3 Li 6.941	1 H 1.00794	1 1A
	[†] Actinide series	*Lanthanide series	88 Ra 226.025	56 Ba 137.327	38 Sr 87.62	20 Ca 40.078	Mg 24.3050	4 Be 9.01218	2 2A	
	eries	e series	89 †Ac 227.028	57 *La 138.906	39 Y 88.9059	21 Sc 44.9559	3B)		<u>а</u> То
			104 Rf (261)	72 Hf 178.49	40 Z r 91.224	22 Ti 47.88	4 4B			save II ato
	90 Th 232.038	58 Ce 140.115	105 Db (262)	73 Ta 180.948	41 Nb 92.9064	23 V 50.9415	5B	1		To save some calculation time, you mall atomic masses to two (2) decimal
C	91 Pa 231.036	59 Pr 140.908	106 Sg (266)	74 W 183.84	42 Mo 95.94	24 Cr 51.9961	6B	`		ne ca
Copyright © 2007 Pearson Prentice	92 U 238.029	60 Nd 144.24	107 Bh (264)	75 Re 186.207	43 Tc (98)	25 Mn 54.9381	7B	1		alcul ses t
nt © 200	93 Np 237.048	61 Pm (145)	108 Hs (277)	76 Os 190.23	44 Ru 101.07	26 Fe 55.847	\propto			ation o two
)7 Pear	94 Pu (244)	62 Sm 150.36	109 Mt (268)	77 Ir 192.22	45 Rh 102.906	27 Co 58.9332	-8B-			1 time 0 (2)
son Pr	95 Am (243)	63 Eu 151.965	110 Ds (271)	78 Pt 195.08	46 Pd 106.42	28 Ni 58.693	5	7		e, yo
	96 Cm (247)	64 Gd 157.25	111 Rg (272)	79 Au 196.967	47 Ag 107.868	29 Cu 63.546	11B	7		u ma imal
Hall, Inc	97 Bk (247)	65 Tb 158.925		80 Hg 200.59	48 Cd 112411	30 Zn 65.39	172 2B	, ,		lay round I points.
y,	98 Cf (251)	66 Dy 162.50		81 T1 204.383	49 In 114.818	31 Ga 69.723	AI 26.9815	5 B 10.811	13 3A	und ts.
	99 Es (252)	67 Ho 164.930		82 Pb 207.2	50 Sn 118.710	32 Ge 72.61	Si 28.0855	6 C 12.011	14 4A	
	100 Fm (257)	68 Er 167.26		83 Bi 208.980	51 Sb 121.757	33 As 74.9216	P 30.9738	7 N 14.0067	15 5A	
	101 Md (258)	69 Tm 168.934		84 Po (209)	52 Te 127.60	34 Se 78.96	S 32.066	8 O 15.9994	16 6A	
	102 No (259)	70 Yb 173.04		85 At (210)	53 I 126.904	35 Br 79.904	CI 35.4527	9 F 18.9984	17 7A	
	103 Lr (262)	71 Lu 174.967		86 Rn (222)	54 Xe 131.29	36 Kr 83.80	Ar 39.948	10 Ne 20.1797	2 He 4.00260	18 8A